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The partition function with boundary conditions for various two-dimensional
Ising models is examined and previously unobserved properties of nonformal
invariance and universality are established numerically.
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1. INTRODUCTION

Although the experiments of this paper, statistical and numerical, were
undertaken in pursuit of a goal not widely shared, they may be of general
interest since they reveal a number of curious properties of the two-dimen-
sional Ising model that had not been previously observed.

The goal is not difficult to state. Although planar lattice models of
statistical mechanics are in many respects well understood physically, their
mathematical investigation lags far behind. Since these models are purely
mathematical, this is regrettable. It seems to us that the problem is not
simply to introduce mathematical standards into arguments otherwise well
understood; rather the statistical-mechanical consequences of the notion of
renormalization remain obscure.
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Our experiments were undertaken to support the view that the fixed
point (or points) of the renormalization procedure can be realized as con-
crete mathematical objects and that a first step in any attempt to come to
terms with renormalization is to understand what they are. We have resorted
to numerical studies because a frontal mathematical attack without any
clear notion of the possible conclusions has little chance of success. We are
dealing with a domain in which the techniques remain to be developed.

A fixed point is a point in a space of presumably an infinite number
of dimensions; so this point and all other points of the space are defined
by an infinite number of coordinates. Some will presumably be superfluous,
so that the total space is realized as a submanifold of some larger coor-
dinate space. The total space will be the carrier, in some sense, of the renor-
malization transformation, but the transformation will not appear explicitly
in this paper. The point does! The implicit condition on each quantity serving
as a possible coordinate of the fixed point is that, at the fixed point itself,
it remains invariant under renormalization and that, at a critical point of
any model within the class considered, its value approaches a limit under
repeated renormalization because renormalization drives the critical point
to the fixed point. Since repeated renormalization is in coarsest terms nothing
more than passage to larger and larger blocks or to smaller and smaller
mesh, the condition is that the quantity has a meaning as the mesh length
goes to zero, the dimensions otherwise remaining the same. For percolation
this is a property of crossing probabilities. Our point of view is that any
such quantity is a candidate as a possible coordinate in the space of the
fixed point. Rather than a single numerical quantity we can consider several
at once, which amounts in the customary mathematical way to considering
objects lying in some given space, finite-dimensional or infinite-dimen-
sional, for example, a space of probability distributions, and if these objects
satisfy this criterion, thus if, for each model at the critical point, they tend
to a limit as the,mesh goes to zero, then this limit or rather its coordinates
in the given space can also serve as coordinates of the fixed point. Such
objects are described in the paper.

There are at least two possibilities: one modeled on the considerations
for the free boson of [L]; the other on the crossing probabilities for per-
colation [LPPS, LPS]. The second possibility was suggested to us by
Haru Pinson to whom we are grateful. Thus to each form M of the Ising
model (taken at the critical temperature) we will attach two points pD(M )
and pC(M ), each defined by an infinite number of coordinates. Both are,
in so far as this can be confirmed by experiments, universal and confor-
mally invariant in the sense of [LPS]. It is unlikely that these two points
are independent. One set of coordinates may well be deducible from
another, but we have not examined this possibility.
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Crossing probabilities may or may not be peculiar to a few models.
The evidence for their nonformal invariance and universality is not difficult
to present and appears in Section 5. There is, however, one point to under-
line. The Ising model is considered in regions that may be bounded or
unbounded. Crossing probabilities are defined for crossings within a region
that may or may not coincide with the region in which the model is con-
sidered. It may be smaller. In contrast to crossing probabilities for percola-
tion, in which there is no interaction, those for the Ising model depend on
both the region in which the crossings are allowed to occur and the region
of thermalization on which the Ising model is considered. Conformal
invariance refers to the simultaneous action of a conformal mapping on the
pair of regions.

The coordinates modeled on the free boson should, on the other hand,
be available for a large class of models. Their definition is, in principle,
quite general, but we have confined ourselves to the Ising model. The states
_ of the Ising model take values in the set [\1] which is contained in the
set of all complex numbers z with |z|=1. This set in turn is covered by the
line z=exp(2?ix). We simply develop the circle on the line. We first assign
to one site p0 in the lattice the value h( p0)=0 and then choose for all other
p the value h( p)=m?, m # Z, so that exp(ih( p)&ih( p0))=_( p)�_( p0). Of
course, there has to be more method than that. For example, for the square
lattice we introduce clusters: maximal collections of lattice sites of the same
spin that are connected through bonds joining nearest-neighbor sites. Each
cluster is surrounded by a curve constructed from edges of the dual lattice
and this curve separates it from all other clusters. To each of these curves
an orientation is assigned randomly and, for nearest neighbors p and q, we
set h( p)&h(q)=\?, the sign being determined by the relative orientation
of the bond from p to q and the curve it crosses. If it crosses no curve, then
_( p)=_(q) and we take h( p)=h(q). Thus to every state _ are attached
several functions h, but h determines _ up to sign. For a finite lattice the
measure on h, the set of all possible h is taken to be such that the measure,
mI , on h assigns the same mass to all points lying above a given _. Their
sum is one-half the mass of _.

Fix now a bounded planar region D and consider the Ising model in
this region with respect to a square lattice whose mesh a approaches 0.
Since the model is to be critical, the contribution to the Boltzmann weight
of a pair of neighboring spins is

eJ_1_2, sinh(2J )=1, J=0.440687

Each h is in effect a function on the whole region if we take the value in
the open square of side a about the site p to be h( p). (The ambiguity at the
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boundary is disregarded here; it has to be confronted in various ways from
experiment to experiment.) If C is a (smooth) curve in R, which can lie
entirely in the interior or run entirely or partially along the boundary, then
we can restrict each function in h to C. This yields a set of points, each
carrying a mass, in the set DC of Schwartz distributions on C, and thus a
probability measure on DC . Experiments to be described in Sections 2 and
3 suggest strongly that this measure has a limit as the mesh tends to 0 and
that the limit is universal and conformably invariant. This is perhaps the
most important conclusion of the paper.

These measures have surprised the authors more than once. When C
is the boundary, the measure has a number of properties, to which we
devote considerable attention, that suggest it is gaussian. It is not.

There is no reason to restrict ourselves to planar regions and we begin
our study with the cylinder, because the ambiguities at the boundary are
then absent. A long cylinder (effectively semi-infinite) is, provided we stay
close to the end, to be regarded as equivalent to a disk. The simplest con-
formally invariant distribution on the set of distributions on the boundary
of a disk is the gaussian distribution with respect to the quadratic form
defined by the Dirichlet form. For a function . this form is obtained by
extending . to a harmonic function .~ in the interior and then taking

g
4? | \\�.~

�x+
2

+\�.~
�y +

2

+ dx dy (1)

The first experiments described in Section 2 strongly suggest that the
measure given by our construction is in some respects very similar to this
gaussian with a constant g= gB that appears to be universal; the final
experiments of that section show, however, that it differs in important
respects from a gaussian. If C is interior, the measure on DC is in no respect
similar to a gaussian.

Our construction is different from but not unrelated to familiar con-
structions relating the Ising model to SOS models. For the Ising model on
a triangular lattice our construction is equivalent in many respects to the
usual one for the O(1)-model. In particular, it is expected that in the plane

( (h(x)&h(0))2) t
2
g

ln |x&0|

The constant g= gI is expected to be 4�3, at least for the triangular lattice,
but the two constants gI and gB are not equal.

gI=4�3, gB=1.470
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Although gI is usually defined only for the triangular lattice, it can be
defined in general. We suppose that it is universal, but we have not
examined this carefully. The pertinent experiments are briefly discussed in
Section 6. The conclusion, which will be reinforced more than once as we
proceed, is that the comparison with the free boson undertaken in this
paper is quite different than the usual one.

There is no reason that the two constants gI and gB should be equal.
One refers to interior behavior in the bulk, the other to behavior on the
boundary. Moreover, as it turns out, they refer to different aspects of a
construction that leads to nongaussian measures with some gaussian
behavior. Although a departure from the conventional view, it could be
argued (we do not attempt to do so here) that for questions of renor-
malization the constant gB may be every bit as important as gI , or, much
better, that the distributions on curves of Section 2 are at least as impor-
tant for renormalization as asymptotic behavior because renormalization,
at least as it is often presented, entails the fusion of bounded regions along
their boundaries (which may or may not partially coincide with that of the
region of thermalization). The measures on DC were originally examined
only for curves on or close to the boundary. They appear, somewhat to our
surprise, to be of interest even in the absence of a boundary. Indeed it may
turn out, with hindsight, that the numerical arguments towards the end of
Paragraph 3.2 for the existence of nontrivial and conformally invariant
measures on interior curves are at least as important as the other results,
argued more elaborately and with more detail, of Sections 2 and 3.

Our point of view would not be at all persuasive if there were no sign
in our fixed point pD , thus in the measures on DC , of the critical indices
0, 1�2 and 1�16. It is seen in Paragraphs 2.3 and 3.2 that these measures do
contain information about critical indices. Section 4, in which we describe
another manifestation of the index 1�16 as well as an interpolation of a
formula of Cardy, is also an essential part of the paper.

The final section is less important. It contains a few observations that
provide some perspective on the definitions of the paper. First of all, the con-
struction of h is by no means canonical. There are alternative constructions
described in Section 7. We can allow jumps other than \?, in particular sev-
eral jumps n?, n odd, with equal or different probabilities. They lead to different
values of gI and to a measure on DC with little resemblance to a gaussian.

The possibility of not using clusters in our sense but the clusters of
Fortuin and Kasteleyn that appear in the high-temperature expansion of
the Ising (or more generally the Potts) model also suggests itself. Such
clusters can also be used to define the crossing probabilities. They lead to
different measures and to different crossing probabilities, whose univer-
sality and conformal invariance we have not tested.
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Finally we point out that the results for the distributions appear to
remain valid at infinite temperature with, of course, a different value for the
parameter appearing in the distribution.

2. DISTRIBUTION OF h AT THE BOUNDARY

2.1. The Free Boson on Domains with Boundary Conditions

The partition functions of a free boson ,� , with compactification radius R,
are familiar objects when the domain is a torus, or a rectangle with the
field satisfying Dirichlet boundary conditions, thus equal to 0 on the
boundary. For a general Riemann surface with boundary and for an
arbitrary specification of the field at the boundary, it may still be possible
to describe the partition functions explicitly (see [CG]). For a cylinder we
use the formula of [L]. As it suggested some of the statistical quantities for
the Ising model studied in this paper, we review this-formula.

The cylinder is described as the quotient of the region 0�Rw�&ln q,
1�q>0, in the complex plane by the transformations generated by
z � z+|, |=2i?. If the fundamental domain is chosen to be 0�Rw<
&ln q and 0�Iw<2i?, the map w � e&w identifies the cylinder with the
annulus of outer radius 1 and inner radius q. We shall use freely the ter-
minologies associated with the cylinder and with the annulus. Observe that
q is close to zero for long cylinders. The angle % is used as the parameter
on both the inner and the outer boundary.

The extremal fields ,� on the domain are real harmonic functions

,� (z, z� )=,0+a ln z+b ln z� + :
n{0

(,nzn+,� nz� n)

The boundary conditions fix the restriction , of ,� to the boundary. On the
inner circle where z=qei% and z� =qe&i%, this restriction is

,in(%)=,0+(a+b) ln q+i%(a&b)+ :
k{0

aB
k e ik%

with the reality condition aB
&k=a� B

k and on the outer circle

,out(%)=,0+i%(a&b)+ :
k{0

bB
k eik%

with bB
&k=b� B

k . (The superscript stands for boson.) The compactification
condition does not require ,� to be periodic but imposes a milder condition:
,� (e2i?z, e&2i?z� )=,� (z, z� )&2?nR, n # Z, thus (a&b)=inR, n # Z. Since the
Lagrangian function (1) does not depend on the term ,0 , this constant can
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be set to zero. Therefore only the difference of the constant terms in ,in and
,out is of significance and we choose to parametrize it with a variable
x # [0, 2?R) and an integer m # Z:

&(a+b) ln q=x+2?mR (2)

The partition function on the cylinder with the boundary values of ,�
specified by ,in , ,out , or equivalently by x, [aB

k ] and [bB
k ], is a product of

three terms [L]

Z(,in , ,out)=Z(x, [aB
k ], [bB

k ]) (3)

=2&1�2Z1(x) Z2([aB
k ], [bB

k ]) (4)

where 2 is the `-regularization of the determinant of the Laplacian for
the annulus. It is given by 2=&i{'2({) where q=ei?{ and '({)=
ei?{�12 >�

m=1(1&e2im?{) is the Dedekind ' function. Since this factor is inde-
pendent of the boundary data, it will be disregarded. The crucial terms here
are they two other factors Z1(x)

:
u, v # Z

eiux�Rq(u2�4R2)+v2R2
(5)

and Z2([aB
k ], [bB

k ])

`
�

k=1

exp _&2k \(aB
k aB

&k+bB
k bB

&k)
1+q2k

1&q2k&(aB
k bB

&k+bB
k aB

&k)
2qk

1&q2k+&
(6)

If measurements are made disregarding the variable x, only

|
2?R

0
Z(x, [aB

k ], [bB
k ]) dx

is of importance and this gives, after proper normalization, a probabilistic
measure on the space of boundary data parametrized by ([aB

k ], [bB
k ]). The

mixing of the boundary data at both extremities becomes more and more
intricate when q approaches 1 or, in other words, when the cylinder
becomes a narrow ring. When q is taken to zero, the measure simplifies as
it becomes the product of two terms, each one depending on [aB

k ] or [bB
k ].

Moreover, in the limit q=0, the probabilistic interpretation of Z is simply
that of the gaussian measure in the variables aB

k and bB
k .

Even though the Coulomb gas provides a description of the minimal
models, we do not know of any similar explicit formula for the partition
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functions of these models for general boundary conditions, although Cardy's
paper [C1] treats explicitly the case of conformally invariant boundary
conditions. There are indeed only a finite number of these, and one of the
difficulties addressed in this paper is how to introduce continuously varying
conditions. Nonetheless we proceed boldly using the partition function (4)
as a guide for the Ising model. In contrast to the free-boson model, the
Ising model defined on a graph G does not have a field taking its values
in the whole real line that we could easily identify with ,��the spin field _
takes its values in [+1, &1]. Starting from the spin field _, defined on the
sites of a (finite) graph G, one can construct the function h as described in
the introduction. It is such that, if p and q are joined, then h( p)&h(q)=\?
if _( p){_(q) and h( p)=h(q) otherwise. If the graph G is embedded in a
surface D, for example, a cylinder or R2, this function h can be extended
to a function locally constant on D except on the edges of the dual graph
where it has jumps. The Ising measure mI on the space of configurations
on the graph G of mesh a endows the (finite) set ha

D of possible functions
h with a (discrete) probability measure. (As observed above, this measure
is such that ma

D(h)=2mI (_)�N_ where N_ is the number of distinct h's that
lead to _ and &_.)

Take the graph to be the subset of the lattice aZ2 of mesh a=1�LV
formed by the points (am, an), 0�m<LH, 0�n�LV. We identify upper
and lower edges and regard the graph as a subset of the cylinder:
z=m+in � exp(&2?z�LV ). How can we compare ha

D to the field-theoretic
measure of the free boson? Using the same letters ak and bk (but without
the superscript ``B '') for the Fourier coefficients of the restriction of h to the
extremities of a cylinder:

hin(%)= :
k # Z

akeik% and hout(%)= :
k # Z

bke ik%

we study the dependence upon ak and bk , k # [&N, &N+1,..., N&1, N ]
of the measure ma

D on Ha
D , disregarding all other coefficients. The object

obtained this way is a measure ma, N
D on R2(2N+1) concentrated on a finite

set. Keeping N fixed, we then take the mesh a on to zero. If the limit of the
measures on R2(2N+1) exists, presumably as a continuous distribution, the
limit as the number 2N+1 of Fourier coefficients is taken to infinity can
be considered. We name the limiting object

mD= lim
N � �

lim
a � 0

ma, N
D (7)

This measure, if it exists, is therefore defined on a space hI with coordinates
([ak], [bk]) and we shall denote the elements of this space by 8I . This
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measure is to be compared with the probability measure induced by (4) on
the space of ,�R. (The radius of compactification R appears here because
we normalized the jumps of the function h to be \?, forcing h to change
by an integral multiple of 2? as % winds around one extremity.) The first,
and principal, question is:

(i) does the measure mD exist?

The parallel just suggested can be pushed further. We introduce first the
derivative H=dh�d% of the restriction of h to either extremity. It is clearly
a sum of delta functions concentrated half way between those sites p and
q at the boundary such that _( p){_(q). The mass of each jump is \?. We
shall use the letter Ak for its Fourier coefficients,

H(%)= :
k # Z

Akeik%

Clearly Ak=ikak . At the other end we use Bk=ikbk . We will use Ak

equally for the coordinates parametrizing �I , the derivative d,I �d%. For the
boson, the probabilistic interpretation of the partition function Z implies
that the k th Fourier coefficient of the restriction ,in is distributed (up to
a normalizing factor) as exp(&2k |aB

k |2) in the limit q=0. Consequently, if
we use the Fourier coefficients of

1
R

d,
d%

= :
k # Z

Ck eik%

with ikaB
k =RCk , the probability density is e&2R2 |Ck | 2�k, again up to nor-

malization. For a long cylinder the parallel drawn here raises the following
questions on mD granted, of course, that the answer to (i) is positive:

(ii) are the random variables defined by the Fourier coefficients Ak

of �I distributed normally as e&;k |Ak | 2
?

(iii) is there a constant R=RB such that the constants ;k are simply
related by

;k=
2R2

B

k
? (8)

(iv) is the joint distribution a product of independent single-variable
distributions?

The rest of this section will describe the response to these questions
provided by numerical simulations. The next will provide evidence that this
limit measure is both universal and conformally invariant.
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2.2. The Distribution of h at the Boundary of a Long Cylinder

The diagrams of Fig. 1 are some evidence for the existence of the dis-
tribution mD on the space hI . They represent the probability distribution
densities of H restricted to one of the extremities of various cylinders, in

Fig. 1. The distribution of RAk , k=1, 2, 4, 8, with respect to the measure ma
D . The mesh

size a corresponds to the lattices 59_401, 79_157, 157_1067, 199_397, 397_793, and
793_1585. The curve 59_401 is at the top when RAk=0. (See text).
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Fig. 1. (Continued)

terms of a single variable (either RA1 , RA2 , RA4 or RA8), all others being
disregarded or, thinking in terms of the limit, integrated out. By rotational
symmetry these densities are (almost) identical to those with respect to the
imaginary part of the same coefficients. (A small discrepancy could arise
from the fact that the numbers of sites along the circumference were not
divisible by 4.) The square lattices contained 59_401, 79_157, 157_1067,
199_397, 397_793, and 793_1585 sites. The first number (LV ) is the
number of sites around the circumference and is half the number of sites
along the length (LH ) minus one, or less. The Appendix gives some further
technical details on the simulations. We note at this point that the partition
function (4) is obtained by summing over the integer n parametrizing the
linear term (a&b)=inR in both ,out and ,out . The analogue of this term
for Ising configurations is straightforward: a configuration with exactly two
clusters (of opposite signs) extending from one end to the other of the
cylinder will have two longitudinal jump lines. Depending on the choice of
the jump across these lines, h will increase by 0, 2? and &2? as % wraps
around the boundary. Other (even) integral multiples of or appear for con-
figurations with more clusters crossing from one end to the other and the
numbers 2n? can be used to partition the set of configurations. We have
not differentiated the measure mD for these various classes. We should add
that, for the cylinders studied in the present section, the configurations h
whose linear term is zero are by far the most probable. The multiples \2?
occurred with a probability about.0005; higher multiples we did not see at
all.

Even though the raw data clearly differentiate the curves attached to
smaller cylinders, smoothing helped to separate the curves between the two
largest one (397_793 and 793_1585). This smoothing was done using the
kernel method with a gaussian kernel; the smoothing parameter was chosen
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according to Eq. (3.28) of [Si], in which _ was taken to be the sample
standard deviation.

The narrowing of the gaps between the curves as the number of sites
is increased is a good qualitative argument for the existence of the limit
mD=limN � � lima � 0 ma, N

D . The peaks of the curves go down systemati-
cally as LV and LH increase, except for the dependence on A1 . In this case
the center of the curve for 793_1585 lies slightly above the center for
397_793 on the small interval (&0.05, 0.05). Around RA1=&0.05 the two
curves cross and the curve for 793_1585 remains below that for 397_793
until approximately RA1=+0.5. From then on ( |RA1|>0.5) the two
curves are so close that they cross each other several times, probably due
to the limitation of our samples. This puzzled us and was checked indepen-
dently by two of us. We have no explanation for it. As will be seen below
however, the variance of the samples, a more global indicator, increases
systematically over the spectrum of all the cylinders considered; in particular
that of 793_1585 is larger than that of 397_793.

These distribution densities are so similar to normal curves that their
variances are a natural tool for a more qualitative assessment of the finite
size effects. In order to answer questions (ii) and (iii), we plot in Fig. 2 the
numbers

|̂LV_LH
k =

k
2(7� LV_LH

k )2

where 7LV_LH
k is thee square root of the variance with respect to the

variable RAk for the cylinder with LV_LH sites. (If both questions were
to be answered positively, then the numbers k;k=k�272

k for 7k=
limLV, LH � � 7LV_LH

k would be a constant. Note that we follow the usual
statistical convention of distinguishing between the theoretical value or of a
quantity and its measured value :̂.) We plotted these numbers for k=1,..., 10
(or, sometimes, k=1, 2, 4, 8), together with a linear fit of these ten points
for every cylinder size on the square lattice considered, the largest triangular
and hexagonal lattices, the anisotropic lattice, and the 254_254 square
and disk geometries. The latter will be discussed in Section 3. The data,
read from the top, appear in the order: cylinders of size 59_401, 79_157,
157_1067, 199_397 for the square lattice Gg ; of size 464_1069 for the
hexagonal lattice Ghex ; then of size 397_793 for Gg ; of size 312_963 for
the anisotropic lattice; of size 416_721 for the triangular lattice G2 ; the
cylinder of size 793_1585 for Gg and the square of size 254_254 are
superimposed; and finally the disk of radius r=300.2 for Gg . The numeri-
cal data are also recorded in Table I for k=1, 2, 4, 8 together with those
for triangular and hexagonal lattices on a cylinder and those on an ellipse
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Fig. 2. The numbers |̂k , k=1,..., 10 for the cylinders, the squares and the disk.

Table I. The Numbers |̂k k=1, 2, 4, 8 as Measured on the Cyliner, the Disk,
the Ellipse, and the Squarea

Geometry (lattice) Size |̂1 |̂2 |̂4 |̂8

Cylinder (Gg) 59_401 1.609 | 3 1.742 | 3 2.020 | 4 2.627 | 5
79_157 1.573 | 2 1.675 | 2 1.880 | 2 2.314 | 3

157_1067 1.520 | 3 1.574 | 3 1.676 | 3 1.883 | 4
199_397 1.506 | 6 1.550 | 6 1.629 | 7 1.793 | 8
397_793 1.493 | 3 1.511 | 3 1.553 | 3 1.631 | 3
793_1585 1.482 | 3 1.491 | 3 1.512 | 3 1.553 | 3

Cylinder (Gg , Jh=2Jv) 312_963 1.487 1.507 1.540 1.614

Cylinder (Gg) 416_721 1.491 1.496 1.536 1.593

Cylinder (Ghex) 116_267 1.599 1.719 1.946 2.418
235_535 1.535 1.601 1.717 1.952
464_1069 1.502 1.530 1.560 1.716

Disk (Gg) r=300.2 1.474 | 3 1.482 | 3 1.487 | 3 1.506 | 4

Ellipse (Gg , Jh=2Jv)
major axis=749.2,

1.477 1.480 1.489 1.505
minor axis=485.2

Square (Gg) 80_80 1.502 | 4 1.535 | 4 1.600 | 4 1.728 | 5
254_254 1.480 | 5 1.494 | 5 1.510 | 5 1.552 | 5

a Only the square lattice on cylinders is discussed in this section. See Section 3 for the others.
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covered by an anisotropic lattice. The digit after the vertical bar gives the
statistical error on the digit just before; for example, the first element in the
table (1.609|3) means that 1�2(7� 59_401

1 )2 is 1.609 with the 950-confidence
interval being [1.606, 1.612]. The (statistical) error bars were not drawn on
Fig. 2 as their length is approximately the size of the symbols used, or less.
All the linear fits meet in a very small neighborhood on the vertical axis.
For the two cylinders with the greatest number of sites, the disk and the
two squares, the ordinates at the origin are all in the interval [1.47071,
1.47262], while the largest cylinder and the disk meet at essentially equal
values (1.47071 and 1.47095 respectively). It is likely that, for the two
smallest cylinders, a Positive quadratic term would have improved the fit
and narrowed the gap with the intersection of the others.

Figure 3 reinforces this impression. The numbers |̂LV_LH
k were drawn

for all the linearly independent Fourier modes (but the constant one) for
the cylinders 59_401 and 397_793. Since each function H59_401 is the
sum of multiples of the same 59 $-functions on the circumference, it can be
identified with a point in R59 that we choose to parametrize with A0 , RA1 ,
IA1 ,..., RA29 , IA29 . Again the distributions with respect to RAk and IAk

are identical and the corresponding samples can be united. The 29 crosses
on the plot are the data for 59_401 and the 198 dots are those for
397_793. The horizontal axis was scaled differently for the two cylinders:
the data were spread evenly on the interval [0, 1], starting at 1

29 for
59_401 and at 1

198 for 397_793. The crosses and the dots follow almost
the same curve when scaled that way. Hence, the change in the slopes for
the various cylinders (Fig. 2) can be seen to be the effect of calculating the
slope of a curve at the origin taking 10 values lying in an interval of length
proportional to 1�LV. This is confirmed by a log�log plot of these slopes
(Fig. 4). The six dots can be fitted linearly and the slope is found to be
&1.031 or, if the two smallest cylinders are discarded, &1.008. These

Fig. 3. The numbers |̂k for 59_401 and 397_793 with the horizontal axis scaled propor-
tionately to 1�LV.

144 Langlands et al.



File: 822J L44415 . By:XX . Date:30:11:99 . Time:11:40 LOP8M. V8.B. Page 01:01
Codes: 2555 Signs: 1905 . Length: 44 pic 2 pts, 186 mm

Fig. 4. Log�Log plot of the slopes of the linear fit of |̂k as function of LV.

results are indeed very close to &1. (It is this second fit that is drawn of
the figure.) Consequently the numbers k�272

k are likely to be all equal to
one and the same constant 2R2

B whose four first digits are 1.471.
This observation together with the previous data indicates that the dis-

tribution mD quite probably exists and that the variances _2
k with respect

to the variables ak=Ak�k are inversely proportional to k:

_2
k=

1
k2 72

k=
cst
k

(9)

with cst=0.3399 close to, but unlikely to be, 1
3 . We have not discussed yet

whether the distributions are gaussian but the form (9) is in fact in agree-
ment with the form (8), at least for the variances of the distributions with
respect to one of the variables when all the others are integrated. The con-
stant R2

B is therefore 0.7355.
We turn now to question (ii): are the Fourier coefficients Ak of �I

distributed normally as e&;k |Ak | 2
? To address this question we used three

complementary methods that we shall refer to as the graphical method, the
method of moments, and the method of goodness-of-fit.

Graphical methods seem a coarse way to assess whether an empirical
distribution is a given theoretical one. Still they are a natural first choice
among the arsenal of statistical techniques designed for this purpose.
Figure 5 plots the empirical histograms for mD as measured on the cylinder
793_1585 as functions of a single variable (RA1 , RA2 , RA4 , and RA8),
all other dependence being integrated out. For these plots we have joined
the data for RA1 , IA1 , RB1 and IB1 which brings the sample to 1424000
configurations. (The symmetries of mD insure that these variables are iden-
tically distributed. We are not assuming here that they are statistically
independent. This will be discussed in the next paragraph.) Besides these
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four empirical distributions, four normal curves have been plotted whose
variances are those of the data. (These variances can be deduced from
Table I.) We have left these empirical distributions as they are, in contrast
to those seen on the Figs. 1, to distinguish them from the (smooth) normal
curves and to give to the reader an idea of the difference between raw and
smoothed data. For the dependence on RA2 , RA4 and RA8 , the ragged
and smooth curves are essentially identical and, based on this evidence, one
is tempted to claim that mD is distributed normally with respect to these
variables. The agreement between the two curves for RA1 is clearly not so
good. The empirical curve lies above the normal curve at the center, crosses
it before |RA1|=0.5 and remains under it at least till |RA1|=1.0. The
departure from normality is statistically significant for the dependence
upon RA1 . After having observed this fact, one also sees, looking more
closely, a gap at the center of the curves for RA2 , though on a significantly
smaller scale. (It might not even be visible if Fig. 5 has been too com-
pressed.) Since this departure from normality surprised us and, especially,
as it is easily observable only for RA1 , we tried to explain it as a finite-size
effect. The curves for the smaller cylinders are however similar and the gaps
seem similar to the eye. (The curves for RA1 become wider as the number
of sites is increased, as is seen on Fig. 1, but the variance of each sample
also becomes larger.) If one is convinced of nonformal invariance, discussed
in Section 3, one can also use the data from an analogous simulation per-
formed on a disk whose boundary contained 2400 sites. For this geometry,
the two curves for RA1 , empirical and gaussian, show a similar gap. Thus,
on graphical evidence only, we cannot conclude that the gap seen between

Fig. 5. Comparison of the empirical distribution m793_1585 as a function of RAk ,
k=1, 2, 4, 8 with gaussian densities whose variance is the sample variance. The case k=1 is
at the top.
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m̂D(A1) and the normal curve is a finite size effect and that it is likely to
disappear as LV, LH � �. The other distributions (for A2 , A4 and A8) are,
however, extremely close to gaussian.

Our first attempt at a more quantitative statement is through calcula-
tion of the moments of the samples. We shall quickly see, however, the
limitations of this approach. We denote by +L

k, i the i th moment of the
distribution mL

D with respect to the variable RAk

+L
k, i=| (RAk) i mL

D(A0 , A1 ,...) dA0 `
�

l=1

dRAl dIAl

The even moments of the normal distribution are known to be the mean
(the 0-th moment, in our case 0 by definition), the variance _2 (the second
moment, in our case an unknown) and +2s=(2s&1)!! _2s. The first five
non-vanishing moments are therefore _2, 3_4, 15_6, 105_8, 945_10. None of
the statisticians among our colleagues suggested the moments as a quanti-
tative tool, probably because of the enormous errors that these measure-
ments carry. Indeed the variance on a measurement of +L

k, i is (2i&1)!! _2i
k

if i is odd and ((2i&1)!!&((i&1)!!)2) _2i
k if i is even. Consequently the

error on +L
k, i rapidly grows out of hand as i increases. Nonetheless the first

ten moments were calculated for the samples for the cylinders 59_401,
79_157, 157_1067, 397_793, and 793_1585.

Since the distribution mL
D is, by definition, an even function in all its

variables, all the i th moments, with i odd, are zero. The data only support
this weakly, as more than 100 of the odd moments lift outside what would
be the 950 confidence interval if the distributions were gaussian.

Even though the errors on the moments +L
k, i are large, it is instructive

to plot some of the moments as functions of log LV, for LV=59, 79, 157,
397, 793. Figure 6 shows the quotients +̂L

1, i �_̂
i
1 and +̂L

8, i �_̂
i
8 , for i=4, 6, that

should tend to 3 and 15 respectively if the limit distributions are gaussian.
(The case i=2 is the variance and was discussed previously.) For the 8-th
Fourier coefficient, these quotients are monotone decreasing for both i=4
and 6 and Fig. 6 repeats in another way the visual observation made from
Fig. 5 that the distribution mD as a function of RA8 is very close to a
gaussian. The plots for the first Fourier coefficient are less conclusive: the
overall behavior is decreasing, but not systematically, and the sixth
moment is still rather far from 15, perhaps an indication that 15 is not the
limit.

The goodness-of-fit technique is our last attempt to quantify the
departure from normality of the dependence on the Fourier coefficients,
particularly of A1 . An overview of this technique (or more precisely this set
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Fig. 6. The quotients +̂L
1, i �_̂

i
1 and +̂L

8, i �_̂
i
8 for i=4 and 6 as functions of log LV.
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of techniques) is given in [dAS]. we are going to concentrate on the ran-
dom variable

w2
n=n |

�

&�
(Fn(x)&F(x))2 dF(x) (10)

known as the Crame� r�von Mises statistic ([dAS], Chap. 4). In this expres-
sion n is the size of the sample and F(x) the cumulative distribution function
to which the data are to be compared, in our case the gaussian whose vari-
ance is that of the sample. If the data x1 , x2 ,..., xn are ordered (x i�xi+1),
then the empirical distribution function Fn(x)=Fn(x; x1 , x2 ,..., xn) is a step
function defined by

0, x<x1

Fn(x)={i�n, xi�x�xi+1 , i=1,..., n&1

1, xn�x

The measure of integration dF(x) in w2
n is equal to f (x) dx, where f (x) is

the probability distribution corresponding to F(q). The integral therefore
gives more weight to intervals in which the random variable x is more
likely to fall. This is particularly well-suited for our purpose as the gap
between empirical and proposed distributions is precisely where the dis-
tribution peaks. Note that, if the data x i , i=1,..., n, are not distributed
according to the distribution F proposed, the variable w2

n will grow with
the sample size n.

The null hypothesis H0 is, henceforth, that Fn(x) is a measurement of
a variable whose distribution is F. Under the null hypothesis H0 , Anderson
and Darling [AD] gave an analytic expression a(w2) for the asymptotic
probability distribution of w2

n , that is, the distribution of the variable w2
n

when the sample size n is taken to infinity. We used their formula (4.35) to
plot the curve of Fig. 7. In Chapter 4 of [dAS], Stephens indicates correc-
tions to be applied to w� 2

n that allows finite samples to be compared to the
asymptotic distribution. For the n's that will be used below these correc-
tions are negligible. The two first moments of the distribution for w2

n are 1
6

(independent of n) and (4n&3)�180n [PS].
We concentrate on two Fourier coefficients, A1 and A8 , as our goal

here is to see whether the departure from normality for A1 can be quan-
tified and whether it decreases with the increase in the number of sites of
the lattice. Again we consider RAi , IAi , RBi , and IBi as independent and
following the same statistics. We can either split the whole available samples
into smaller sets of n elements or measure the variable w2

n for a very large n.
With the first method, a good average w2

n can be calculated if the number
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Fig. 7. The asymptotic distribution a(w2) together with the histograms for A1 (dots) and A8

(crosses) for the cylinder 59_401 and n=1000.

N�n of smaller sets is large enough. The second method will provide a
single number that will with luck clearly reject H0 if it has to be rejected.
We apply both.

In splitting the large samples into smaller sets, we have to make a
careful choice for n. one restriction comes from the actual values of the
L2-integral that we want to measure. Using the data for the cylinder
397_793 in the first format described in the appendix (that is, grouped in
401 bins), we can estimate an order of magnitude of w2

n�n=��
&� (Fn(x)&

F(x))2 dF(x) for the whole sample. (This was done using not the technique
suggested by statisticians [dAS, AD] but using rather the naive Riemann
integral over these 401 bins, F(x) being estimated at the center of these
bins. We did not attempt to evaluate the error in these calculations.) For
A1 this integral is 0.000046 and approximately 10 times smaller for A8 .
Even though there is an important statistical error on these numbers they
give us an idea of the order of magnitude. We are therefore measuring a
very small departure from normally if any. On the one hand, the strategy
of splitting the sample requires to get an average w2

n
@ good enough that, if

it is different from 1
6 , the difference is unlikely to be of statistical origin and

should instead indicate that H0 needs to be rejected. In other words, one
should break the sample into several smaller samples to get a good
average. On the other hand, if H0 is false, the quantity w2

n increases with n.
Since the second moment of the distribution for w2

n is rather large (r 1
45),

we need to choose n large enough that the statistical error on w2
n be

reasonably smaller that the number itself. A rough estimate of this error is
given by - 1�45(N�n) where N�n is the number of sets obtained by splitting
the sample of size N into subsets of n elements. There is an obvious com-
promise to be struck and we chose n=1000.
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We measured w2
n for the three cylinders 59_401, 157_1067 and

397_793 using the methods described in [dAS, AD]. These cylinders are
the three runs whose data were kept in the second format described in the
appendix, so that the exact values of all the xi were available. This format
allowed us to compute again the coefficients Ai (and Bi for 397_793). The
two histograms for A1 (dots) and A8 (crosses) for the cylinder 59_401 are
plotted on Fig. 7 together with the asymptotic distribution a(w2). The
range [0,0.8] accounts for more than 990 of the observations. Even
though the crosses seem to follow more closely the curve than the dots,
a quantitative assessment is not inappropriate. The number N�n of w2

n@ is at
least 2064 for each of the three cylinders and, consequently, the statistical
error on the resulting w2

n listed in Table II is 2 - 1�(45_2064)t0.0066.
Note that, for A8 , the intervals of confidence around the average w2

n always
contain 1

6 , the predicted mean. Any departure from normality for A8 , if
any, cannot be observed from this test. For A1 , the predicted 1

6 always falls
outside of the 950-confidence interval, though barely so for 397_793.
This confirms the graphical observation made earlier and forces us to
reject H0 .

As described earlier the other strategy is to compute the numbers w2
n

for a large n. We chose n=250000. The disadvantage of doing so is clearly
that one has a single measurement of w2

n , not an average. The results
appear also in Table II. The (single) W 2

n@ for the dependence on A8 is small
for all three cylinders and the hypothesis that as the size of the cylinder (as
well as n) goes to infinity the distribution of w2

n approaches a(w2) is totally
acceptable. However, the values of w2

n@ of A1 indicate that, almost surely,
they do not follow these statistics. The null hypothesis H0 must be rejected
for A1 .

The null hypothesis refers, however, to a lattice of a given size and it
is not these with which we are ultimately concerned; it is rather the limit
of the distributions as the lattice size tends to infinity that is relevant. One
obvious observation from Table II is that the gap between the empirical

Table II. The Means w2
n for n=1000 and the Number w2

n@ for n=250000

n=1000 n=250000

A1 A8 A1 A8

59_401 0.1818 0.1673 5.578 0.1877
157_1067 0.1802 0.1638 3.490 0.0682
397_793 0.1745 0.1656 2.587 0.0947
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data and a gaussian curve is narrowing as the number of sites increases.
Even though H0 has been rejected, we used the variable w2

n , n=250000, to
examine the relationship between the gap and LV. We did further runs,
calculating only the value of w2

n for the dependence on A1 . For each of the
lattices 59_157, 77_155, 101_203, 125_251, 157_313, 199_399,
251_501, and 397_793, we obtained between 20 and 53 measurements of
the variable w2

n . Since H0 does not hold, we do not know the distribution
of this random variable. On the log-log plot 8, we drew the average for
each lattice (_) together with the whole sample (dots). The spread in the
sample for each lattice shows that the variance is very large and thus
underlines the difficulty of obtaining a reliable mean for w2

n . None the less
the function w� 2

n(LV ) is monotone decreasing and the linear fit of the data
(with the first two excluded) plotted on Fig. 8 indicates that a power law,
(w2

n& 1
6) B :LV =(:t2.48, =t&0.278), is a reasonable hypothesis. We

point out however that, with our measurements of w� 2
n , we could hardly

choose between the above power law or any of the form (w2
n&x) B LV =

with x in the interval [0, 1]. For this we would need :LV =<<1�6 or
LV>>10000.

So, are the Fourier coefficients Ak distributed normally? For k large
enough (say k�4), it is impossible with our samples to see or calculate any
difference between the empirical and the normal distributions. For small k,
particularly for A1 , the gap is obvious but the goodness-of-fit technique
provides clear evidence that it decreases as the size is increased. That the
gap vanishes as LV, LH � � is not a claim on which we care to insist
given only the present data.

2.3. Statistical Dependence and the Two-Point Function

The previous paragraph studied the distribution mD with respect to a
single RAk or IAk , all the others being integrated. We now turn to the last

Fig. 8. Log�log plot of w2
n , n=25000, as a function of LV.
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question raised in Paragraph 2.1, that of statistical dependence of the
variables Ak and Bk .

The test for statistical independence that comes first to mind is the
correlation coefficients between the random variables RAk , IAk , RBk ,
and IBk . These were calculated for the cylinder with 397_793 sites.
According to Chapt. 5 of [W] the correlation coefficient of a pair of inde-
pendent gaussian variables is distributed with mean 0 on [&1, 1] as

1 \N&1
2 +

- ? 1 \N&2
2 +

(1&r2) (N&4)�2 dr (11)

Here N is the size of the sample used to measure the correlation coefficient
(N=281000 for the present calculation) and no longer the cutoff N used to
measure the distribution ma, N

D . If we set r=s�- N and apply Stirling's
formula, (11) becomes approximately

1

- 2? \1&
s2

N +
N�2

dst
1

- 2?
e&s2�2 ds

Of the correlation coefficients for all pairs of distinct variables in RAk ,
IAk , RBk , and IBk , k=1,..., 198, the largest turned out to be 0.0097,
very small indeed. However this test is (almost) useless! The measure mD

is invariant under rotation of the cylinder around its axis, or at least,
m397_793

D is invariant under a finite subgroup. Under a rotation by an
angle ,, the Fourier coefficient Ak picks up a phase eik, and the expected
value E(AkAl) must vanish unless k=&l. For pairs of variables attached
to the same extremity, the previous numerical calculation is not useful. It
is meaningful only for the pairs (RAk , RBk), (IAk , RBk), (RAk , IBk), and
(IAk , IBk) of variables at different extremities, but a more discriminating
test of independence is certainly required.

The two-point correlation function of spins along the boundary turns
out to be a striking test for the independence of the variables at one end
of the cylinder. Because of the identification _(q)=eih(q) introduced in
Paragraph 2.1, the measure mD on the space of functions h, or more
precisely on the space hI , should allow for the computation of the correla-
tion function (_(%1) _(%2)) of spins along the extremity. Arguments have
been given in the literature (e.g., in [C3, CZ]) that this two-point function
should behave as the inverse of the distance between the two points,
namely the cord length sin((%1&%2)�2) for the geometries of the disk and of
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the cylinder. If we distinguish between the functions h and the elements , of
the limiting space hI , the function (_(%1) _(%2)) should be (e i(,(%1)&,(%2)))
with

,(%1)&,(%2)= :
�

k=1

[(e ik%1&eik%2)+a� k(e&ik%1&e&ik%2 )]

(The relative minus sign between the ,'s removes the irrelevant constant
term.) Now assume that the variables Rak and Iak are statistically inde-
pendent and normally distributed with variance 1�(2RB - k). Gaussian
integrations lead to

(ei(,(%1)&,(%2)))= `
�

k=1

exp \&
|zk |2

2kR2
B+

with

|zk |2=|eik%1&e ik%2 | 2=2 |1&cos k%|, %=%1&%2

Since ��
k=1 cos kx�k=&ln(2 sin x�2), we obtain up to an (infinite) con-

stant

(ei(,(%1)&,(%2)))=
1

sin:(%�2)
(12)

with :=1�R2
Br1.360, a number that is not a simpler fraction and certainly

not 1. Since the small departure from normality discussed in the previous
paragraph is unlikely to change much this result, there is here an obvious
conflict between the prediction :=1 and this result based on the
hypothesis of independence of the ak 's.

We do not know if the prediction (_(%1) _(%2)) B 1�sin((%1&%2)�2)
has ever been checked through simulations. However the correlation can be
retrieved easily from our data for the cylinders 59_401, 157_1067 and
397_793. Figure 9 presents the results together with the linear fits of the
data after deletion of the seven first (short-distance) points. The slopes of
these fits are 0.993, 1.001 and 0.988 for the small, middle and large cylinders.
This prediction requires no further scrutiny.

We are left with the possibility that the variables Ak are statistically
dependent. To show that this is most likely the case, we offer the following
two data analyses. We first study the conditional distributions of Fourier
coefficients. Namely, we consider the distribution of m(RAk | xmin<
RAl<xmax), that is, the distribution of Ak when Al is restricted to values
between xmin and xmax and all the others variables are integrated. Similar
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Fig. 9. Log�log plot of (_(%1) _(%2)) as a function of sin((%1&%2)�2) for the cylinders
59_401 (top), 157_1067 and 397_793 (bottom) together with linear fits.

conditional distributions with the imaginary parts are also considered. If
the Fourier coefficients were independent, every value or interval for the
restricted coefficient would lead to the same distribution.

In Fig. 10, we present the distribution of RA1 given two windows on
the values of RA2 , for a 157_1067 cylinder. The windows were chosen in
such a way that both distributions had similar statistics. The numerical
data clearly show that the two distributions are different, and thus that
these two Fourier coefficients are correlated. However, this correlation
could be affected by the finite size of our lattices. This question of the
importance of such effects is difficult to address. Since we have easy access
to only three cylinder sizes, we omitted a rigorous study of finite-size
effects.

Nevertheless, to acquire a feel for the dependence of m(RAk | xmin<
RAl<xmax) on the choice of k, l and the finite size, we computed, for

Fig. 10. The conditional distribution of RA1 on the 257_1067 cylinder. The top graph con-
tains configurations with |RA2 |>1.125, while the lower one contains those with
|RA2 |<1.125.
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several values of k and l, the ratio of the variances of the conditional dis-
tributions of RAk when |RAl |>1.125 and |RAl |<1.125 (which we will
denote r(RAk , RAl)). We also made the same comparison for the real part
of Ak and the imaginary part of Al . If the distributions were independent,
all these ratios would be one. We studied these ratios for cylinders of size
59_401, 157_1067, and 397_793. The first observation is that almost all
these ratios diminish when lattice size increases, so that there is an finite-
size effect. For example, r(RA1 , IA1) goes from 1.19 for the 59_401 cylin-
der to 1.05 for the 397_793 one. Besides this finite-size effect, comparing
ratios for different values of k and l, we observed that the statistical depen-
dence of Fourier coefficients Ak and Al diminishes rapidly when |k&l |
increases, and is weaker for larger k or l. For instance, for the biggest cylinder,
r(RA1 , RA2)=1.06, while r(RA5 , RA6)=1.01 and r(RA1 , RA12)=0.99.
These numbers are not conclusive, and further experiments would be essen-
tial were there not another more compelling argument to establish the
dependence of the variables.

As the second analysis we measure the two-point correlation
(ei(,(%1)&,(%2))) using the measure mD . This is not the same as directly
measuring (_(%1) _(%2)) from the configurations as we just did to obtain
Fig. 9. Recall that mD is obtained by the limit mD=limN � � lima � 0 ma, N

D

(see Eq. (7)). Consequently we need to set a cut-off N and compute the
correlation function on a sufficiently large cylinder using as an approxima-
tion for , the truncation of h to its N first Fourier coefficients. If the cylin-
der is large enough, the distribution mD as a function of Ak , k=&N,..., N
will be fairly well approximated by ma, N

D . There remains the limit N � �.
To a good approximation this limit may probably be forgotten altogether.
The previous analysis showed that the dependence between Fourier coef-
ficients with small indices and those with large ones is significantly smaller
than the dependence amongst the first Fourier coefficients. If this is so, the
gaussian approximation and the independence hypothesis are good ones
for the distribution of Ak , k>N. If the function h being approximated is
smooth enough, the error around %1&%2=? for example should be of
order o(1�N ) according to the computation leading to (12). By definition
the functions h are piecewise continuous and their smoothness might be
improved by smearing functions as in the usual mathematical treatment of
Green's functions. (See Section 6.) We performed the calculation with and
without smearing. The results for the cylinder 397_793 are shown on
Fig. 11. The thick curve is the log�log plot of (_(%1) _(%2)) as a function
of sin((%1&%2)�2) that was plotted on Fig. 9. The middle, undulating curve
has been obtained by repeating the following two steps over the whole set
of configurations: first replace the function , by the truncation h� of h to the
sum of its 30(=N ) first Fourier coefficients and, then, add the resulting
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Fig. 11. Log�log plot of (_(%1) _(%2)) and of (ei(,(%1)&,(%2))) as functions of sin((%1&%2)�2)
for the cylinder 397_793. (See text.)

complex number ei(h� (%1)&h� (%2)) to the sum of the numbers previously
obtained. Only the real part of the average is plotted as the imaginary one
is essentially zero. The first term neglected by the truncation (a31) is
responsible for the wavy characteristic of the curve. The local extrema
occurs at every 6 or 7 mesh units in agreement with the half-period
(397�31�2r6.4). A linear fit of this curve (after deletion of the seven first
data) has a slope of &1.027. The top curve was obtained in a similar
fashion, except that the two steps were preceded by the smearing of the
function h. This smearing was done by convoluting the functions h with a
gaussian whose variance was 2.5 in mesh units. The wavy structure is essen-
tially gone. The curve appears above the two others because the smearing
introduces in h(%1) and h(%2) contributions of spins at points between %1

and %2 and thus more strongly correlated. The smeared correlation func-
tion is therefore larger than the two others. A linear fit with the deletion of
the same short-distance data gives nevertheless a slope of &1.062.

The conclusion is thus that the random variables Ak (or ak) are
statistically dependent and that the computation of (ei(,(%1)&,(%2))) using
the distribution mD leads to the predicted critical exponent :=1 for the
spin�spin boundary correlation. A consequence of the statistical depen-
dence is that we cannot offer as precise a description of the measure mD as
would have been possible if the answer to question (iv) had been positive.
This detracts neither from its universality nor from its conformal invariance.

3. UNIVERSALITY AND CONFORMAL INVARIANCE OF THE
DISTRIBUTIONS OF h ON CLOSED LOOPS

3.1. Two hypotheses

Various crossing probabilities were measured in [LPS] for several
percolation models at their critical points. Their fundamental character was
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stressed by two general hypotheses, one of universality, the other of con-
formal invariance, that were convincingly demonstrated by the simulations.
The same two hypotheses will be demonstrated for the Ising model at criti-
cality in Section 5. In this section,, we propose similar hypotheses for the
distribution of the function h introduced above and confront them with
simulations.

We have considered in the previous section the Ising model on the
square lattice. Other lattices could be used. The strength of the coupling
could vary from one site to another. Aperiodic lattices could be considered
or even random ones. It is, however, easier to be specific and to consider
two-dimensional planar periodic graphs G. We adopt, as in [LPS], the
definition used by Kesten [K] in his book on percolation: (i) G should not
have any loops (in the graph-theoretical sense), (ii) G is periodic with
respect to translations by elements of a lattice L in R2 of rank two, (iii) the
number of bonds attached to a site in G is bounded. (iv) all bonds of G

have bounded length and every compact set of R2 intersects finitely many
bonds in G and (v) G is connected. An Ising model is a pair (G, J ) where
J is a positive function defined on bonds, periodic under L. The function
J is to be interpreted as the coupling between the various sites. Only some
of the models (G, J ) will be critical, or, as often expressed, each model is
critical only for certain values of the couplings J. The following discussion
is restricted to models at criticality.

Let D be a connected domain of R2 whose boundary is a regular curve
and let C be a parametrized regular curve (without self-intersection) in the
closure of D. If (G, J ) is an Ising model, one can measure the distribution
mD, C([ak]; G, J ) as we did in the previous section for mD on the square
lattice. (Although the coordinates Ak will ultimately become our preferred
coordinates, we continue for the moment with the ak .) The limit on the
mesh can be taken either by dilating C and D with the dilation parameter
going to infinity while G fixed or by shrinking the planar lattice G

uniformly while keeping C and D fixed. As before we shall assume that the
limit measure exists for every regular C. The previous section gave strong
support for this supposition when C is the boundary of D and (G, J ) the
isotropic Ising model on the square lattice. We examine the following
hypothesis.

Hypothesis of Universality. For any pair of Ising models (G, J )
and (G$, J$), there exists an element g of GL(2, R) such that for all D and C

mD, C([ak]; G, J )=mgD, gC([a g
k]; G$, J$) (13)

The notation gD and gC stands for the images of D and C by g. The
Fourier coefficients a g

k are obtained by integrating on gC with respect to % g,
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the image by the linear map g of the parameter % on C. The transformation
g does not affect the underlying lattice G. For example, if G$ is the regular
square lattice, it remains the regular square lattice. The domains D and gD
are simply superimposed on G and on G$. For the usual Ising models, those
defined on other symmetric graphs (the triangular and the hexagonal) with
constant coupling or the model with anisotropic coupling on a square lat-
tice, the matrix g is diagonal. It is easy to introduce models for which g
would not be diagonal. We have not done so for the Ising models, but an
example for percolation is to be found in [LPS].

To introduce the hypothesis of nonformal invariance of the distribu-
tions mD, C([ak]; G, J ), it is easier to restrict at first the discussion to the
Ising model on the square lattice Gg with the constant coupling function Jg .
A shorter notation will be used for this model: mD, C([ak])=mD, C([ak];
Gg , Jg). We endow R2 with the usual complex structure, in other words
we identify it with the space of complex numbers in the usual way. For this
complex structure any holomorphic or antiholomorphic map , defines a
conformal map, at least locally. Given two domains D and D1 we consider
maps , that are bijective from the closure of D to the closure of D1 and
holomorphic (or antiholomorphic) on D itself. Thus D1=,D. Let ,C be
the image of C.

Hypothesis of Conformal Invariance. If , satisfies the above
conditions, then

mD, C([ak])=m,D, ,C([a,
k]) (14)

where the Fourier coefficients a,
k appearing as arguments of m,D, ,C are

measured with respect to the arc-length parameter on ,C in the induced
metric, or equivalently as:

a,
k=

1
2? |

2?

0
h,D b ,C(%) e&ik% d% (15)

where ,c is the restriction of , to C, h,D is the function h on the domain
,D and % is the (usual) arc-length parameter of the original loop C.

Even though we have formulated this hypothesis for the Ising model
on the square lattice with constant coupling, it is clear that it can be
extended to any model (G, J ) using the hypothesis of universality.

3.2. Simulations

Since the curve C is no longer necessarily an extremity of a cylinder,
our first step is to acquire some intuition about tithe measure mD, C for
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curves C inside the domain D. To do so, we continue our investigation of
the cylinder for (Gg , Jg). Thus D remains the cylinder, but we select
several curves inside it. On the cylinder 397_793 the curves Ci are sections
coinciding with the leftmost column (C0), the 9-th column (C1), the 17-th
(C2), the 33rd (C3), the 65-th (C4) and the middle column (C5). These
curves are at a distance of 0,0.0201, 0.0403, 0.0806, 0.161 and 0.997 from
the boundary measured as a fraction of the circumference. We have not

Fig. 12. Two ``typical'' configurations on a disk of radius 200 with free boundary.
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checked that the measurements on curves and their mirror images with
respect to the middle of the cylinder are statistically independent. The
closest pair (the curves on columns 65 and 729) are, however, at a distance
of 665 mesh units, that is, more than 5

6 of the full length of the cylinder. So
to the distributions on the first five curves (all but the central one), we have

Fig. 13. Distributions mD, Ci
as functions of the real part of Ak in the natural order: k=1,
k=2, k=4, k=8, k=16, k=32.
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joined those on their mirror images, doubling the numbers of configura-
tions studied Fig. 13 presents the measure mD, Ci

as functions of the real
part of the Fourier coefficients Ak , k=1, 2, 4, 8, 16, 32. Each graph shows
the dependence on a fixed Ak for the six curves. On each graph the lowest
curve at the origin corresponds to C0 = boundary, the case studied in
Section 2. As the curve C is taken closer to the center of the cylinder, the

Fig. 13. (Continued)
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distribution becomes sharper at the center. This is perhaps to be expected
as the sites at the boundary are freer to create clusters of intermediate size
than are the sites in the bulk, increasing thereby the values of the various
Fourier coefficients. (See Figs. 12 and 18.) Another natural feature is the
gathering of the distributions for all the interior curves on the plot for
RA16 and RA32 . Indeed the higher Fourier coefficients Ak probe small
scale structure, at the approximate scale of 1�k in circumference units. For
example, the Fourier coefficient A32 will be sensitive mostly to clusters
having a ``diameter'' of r12 mesh units or less and these clusters intersect-
ing the curves C at a distance of 32 or of 64 mesh units from the extremity
should be distributed more or less the same way. In other words the bulk
behavior is reached closer to the boundary for higher Fourier coefficients.
One last observation about these plots is that the bulk distribution is
definitely not a gaussian in RA1 ! It is sharply peaked at the center but still
has a wide tail. (The distribution in RA1 measured along the mid-curve of
the cylinder can be better seen on Fig. 14 below.)

To examine the hypotheses of universality and conformal invariance,
we ran simulations on other pairs (G, J ) and on other geometries. We dis-
cuss both at the same time. Three other pairs (G, J ) were considered: the
regular triangular and hexagonal lattices Gq and Ghex with the constant
function J and the regular square lattice Gg with a function J that takes a
constant value Jh on the horizontal bonds and another constant value Jv

on the vertical ones with Jh=2Jv . We shall call this model the anisotropic
Ising model. This choice of J makes the horizontal bonds stronger than the
vertical ones and clusters of identical spins will have a shape elongated
in the horizontal direction as compared to those of the isotropic model
(Gg , Jg).

The critical Couplings are determined by sinh 2Jh sinh 2Jv=1 (see [B]
or [MW]). If the hypothesis of universality is accepted then it follows from
formula (5.9) of XI.5 of [MW] that the matrix g that appears in (13)
(when (G, J ) is the critical model on the square lattice and (G$, J$) the
anisotropic model) is4

\1
0

0
sinh 2Jh+
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4 The point is that because of the anisotropy the two-point correlation functions decays more
slowly in the horizontal direction than in the vertical, behaving at large distance as
1�(x2+a2y2)1�4 with a=sinh 2Jhr1.54. The appropriate conformal structure is that defined
by the ellipse x2+a2y2=1. We are grateful to Christian Mercat for this reference. See also
this thesis ([Me]) in which the conformal properties of the Ising model are discussed from
quite a different standpoint.



(The critical value of Jh for which Jh=2Jv is 0.609378... .) The lattice used
for the anisotropic model has LV=312 and LH=963. These dimensions
correspond to a cylinder on the square lattice with a horizontal�vertical
ratio of 1.999, very close to the one used for the square lattice 397_793
that has a ratio 1.997. The lattice used for the triangular lattice was oriented
in such a way that every triangle had one side along the horizontal axis
and the dimensions used were LV=416, that is, the number of horizontal
lines containing sites, and LH=712, the number of sites on these lines. The
aspect ratio for a square lattice corresponding to these numbers is 2.001.
The largest hexagonal lattice used was of size 464_1069. Again 464 is the
number of horizontal lines containing sites and LH=1069 is the length of
the cylinder in mesh units. The corresponding aspect ratio for the square
lattice is 1.995. We also measured the smaller hexagonal lattices of sizes
116_267 and 235_535. The difference between these four ratios is smaller
than the limitation due to finiteness discussed in [LPPS] The distances of
the curves Ci from the boundary were chosen as close as possible to those
used for the cylinder on (Gg , Jg) and given above. (The manner in which
the Fourier coefficients of the restriction of h to these curves were calcu-
lated is described in the appendix.)

As evidence for the hypothesis of conformal invariance, we compared
three different geometries, namely the cylinder used in Paragraph 2.2,
a disk, and a square. We identify the cylinder with the rectangle in these
complex plane of height v (its circumference) and of length h. The analytic
function z � e&2?z�v maps this cylinder onto an annulus. With our choice of
dimensions for the cylinder (v=397, h=793), the ratio of the inner and
outer radii is less than 10&5 and unless the outer diameter of the annulus
is larger than 105, the inner circle contains a single site. We took the liberty
of adding this site to the domain and of identifying it with a disk. In other
words, although the geometries of the cylinder and of the disk are not con-
formally equivalent in the sense of the hypothesis, the finite size realization
used here for the disk differs by a single site from the annulus conformally
equivalent to the cylinder. The radius of the disk was taken to be 300.2.
The disk can be mapped onto the square by the Schwarz�Christoffel formula

,(z)=|
z

0

1

- (w2&ei?�2)(w2&e&i?�2)
dw (16)

which defines a map, with the unit disk as domain, holomorphic except in
the four points \e\i?�4. Both maps satisfy our requirements. For the
square and the disk, the distributions were measured at the boundary. For
the disk, they were also measured on the four circles corresponding to the
inner circles on the cylinder that are not at its center. This latter circle on
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the cylinder is mapped, inside the disk of radius r=300.2, onto a circle of
radius r0.57, less than one mesh unit. The distribution mD, C on this circle
is clearly impossible to measure for this lattice size.

Table I of the previous section has been completed with the data
|̂k=k�2(7� k)2 for six new experiments: the three new Ising pairs (G, J )
(triangular lattice, hexagonal lattice and anisotropic function J ) on the
original cylindrical geometry; the two new geometries (disk and square)
covered by the square lattice; an ellipse covered by the square lattice with
anisotropic interaction. For the square, two runs were made on a lattice of
80_80 and 254_254 sites. The data for the disk and both squares were
also drawn on Fig. 2. As discussed previously, it can be seen there that
their |̂k 's follow exactly the same pattern as those of the cylinders and that
the ordinate at the origin of their fits falls in the same very small window
[1.47071, 1.47262]. It is interesting to notice that the small lattice 80_80
on the square geometry leads to |̂k 's that are between those of the lattices
199_397 and 397_793 for the cylinder. Considering that the number of
sites in the lattice 199_397 is more than twelve-fold that in the small
square, this might seem surprising. The explanation is likely to be that the
number of sites on the boundary where the distribution is measured is the
leading cause of the finite size effect. The |̂k 's for the triangular lattice and
for the anisotropic model were obtained from the 401-bin histograms of
the empirical distributions. (See the appendix.) No attempt was made to
provide confidence intervals. The linear fits of the |̂k , k=1, 2, 4, 8, are
1.4723+0.0152k (triangular lattice) and 1.4695+0.0180k (anisotropic
model). For the largest of the square lattices it was 1.4712+0.0102k and
for the disk 1.4710+0.0044k. The ordinates at the origin (1.4723, 1.4695
and 1.4712) are extremely close to the narrow window above for the larger
cylinders, the disk and squares, especially striking as the samples for
these experiments (200K) were the smallest of all in this section and the
previous one. The linear fit for the largest of the hexagonal lattices is
1.4793+0.0294k and the ordinate at the origin is not quite so good but the
slope remains large compared with the other fits. Indeed the product of the
slope and the circumference LV is in the four cases: t8.1 (square); t6.3
(anisotropic); t6.4 (triangular); t14.0 (hexagonal). This suggests that the
circumference of the hexagonal lattice must be twice that of the triangular
lattice in order to obtain comparable results, perhaps because it contains
only half as many bonds per site as the triangular lattice. The ordinate at
the origin (1.4770) is nevertheless close and this is important because it
confirms the suitability of the construction of the function h that is
described in the appendix, a construction less obvious and more difficult to
implement for the hexagonal lattice than for the others. The anisotropic
lattice on an ellipse was included to demonstrate that the measure mD, C at
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the boundary is able to select the appropriate conformal structure even
when it is not obvious by symmetry. One map between the structure
attached to the anisotropic lattice, thus the square lattice with the indicated
asymmetric interaction, and that attached to the square lattice with sym-
metric interaction takes an ellipse x2+ay2�1, a=1.54369, to the disk
x2+ y2�1. As ellipse we took one whose major and minor axes were of
lengths 749.2 and 485.2. The usual linear fit of |̂k , k=1,..., 10 yielded
1.4712+0.0044x.

The plots of Fig. 14 show the measure as a function of RA1 and RA8

when h is restricted to three different curves on the cylinder or to their con-
formal images on other geometries: the boundary, the second inner circle
(at a distance 0.0403 from the boundary measured as a fraction of the cir-
cumference) and the circle in the middle of the cylinder. For the boundary
(first column of Fig. 14) five models have been drawn: the cylinder covered
with the square, the triangular and the anisotropic lattices, the disk and the
square both covered with the square lattice. (The numbers of sites on the
various lattices are those given earlier in this paragraph; only the data for
the square of side 254 were drawn here.) For the second column of the
figure, the same models were used but no measurements were made for the
square. For the curve in the middle (third column), only the three lattices
on the cylinder were measured, because the corresponding circle on the
disk is too small to allow for reliable measurements. (See below.) To these
three lattices a fourth square lattice, with 199_2399 sites, was added on
the RA1 plot. The agreement is convincing, as it is for the distributions
along the other curves Ci that we measured.

At first glance no cogent comparison can be made between the central
circle on the cylinder and a circle in the disk. A circle in the middle of a
short cylinder is equivalent to a circle in an annulus, but when the cylinder
becomes extremely long, it is more like a circle in the plane. For example,
if the cylinders of size 397_793 and 199_2399 are mapped to an annulus
of outer radius 1, the inner radii will be 4_10&6 and 1_10&33 and the
images of the central circles will have radii 2_10&3 and 4_10&17 respec-
tively (too small to make a measurement). All circles in the plane are,
however, conformably equivalent. So we can still compare the distributions
on the central circle of a cylinder with the distribution on a circle in the
plane. This is easier said than done, because the larger the circle the larger
the domain needed to make useful measurements. There is none the less a
method, so that the distributions measured on the central circle on both
cylinders 397_793 and 199_2399 can be considered as distributions in the
bulk.

We first calculate the |k 's for progressively smaller circles inside disks
and observe that they do tend toward a limiting distribution. The main
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Fig. 14. Distributions mD, Ci
as functions of the real part of Ak (k=1 on the first line, k=8

on the second) on three different curves C: the boundary (first column), the curve at a dis-
tance of 16 mesh units on the cylinder 397_793 and its conformal images (second column)
and the curve at the middle of the cylinder (last column).
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Fig. 14. (Continued)

difficulty is again the finite-size effect revealed in Fig. 2. We compare corre-
sponding inner circles on disks of radius 100.2, 200.2, 300.2. On each of
these, the distributions were measured on inner circles of radius 1., 0.5, 0.4,
0.3, 0.2, 0.1319, 0.1 and 0.04790 times the outer radius. The smallest inner
circle on the disk of radius 100.2 has a radius 4.8 in mesh units. Finite-size
effects will be indeed important! Though we measured the |k 's for k up
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Fig. 15. The |̂k , k=1,..., 8 on the boundary and on three inner circles of the disks of radius
100.2 (+), 200.2 (_) and 300.2 ( v ). The continuous lines represent the corresponding data
for the cylinder 397_793.

to 32, the overall behavior is clear for k=1,..., 8, as presented on Fig. 15.
Only the circles of relative radius 1.0, 0.4, 0.2 and 0.0479 were retained for
ease of reading. The ``+'' are for the disk of radius 100.2, the ``_'' for 200.2,
the `` v '' for 300.2 and the corresponding data for the cylinder 397_793 are
joined by straight lines. For the boundary, the three disks give a better
approximation of the limiting distributions than the cylinder but for the
inner circles the roles are exchanged. The spread between the three disks,
and between them and the cylinder, is particularly important for the
smallest inner circles but the way it decreases with the increase of the disk
radius supports the hypothesis that a common distribution for these two
geometries exist on each of these circles.

A comparison of the distributions on inner circles for the disk and the
cylinder is therefore possible. Figure 16 shows the |k 's, k # [1, 2,..., 32], for
the cylinder 397_793 (v) and the disk of radius 300.2 (+). Curves were
added to help the eye. Seven circles were used. Their distance from the
boundary of the cylinder, in Mesh units, and their relative radius for the
disk (in parenthesis) are 0(1.0), 8(0.881), 16(0.776), 32(0.602), 64(0.363),
128(0.132) and 192(0.0479). The measurements on the central circle of the
cylinder were added (G). Only for the two smallest circles of radius 0.132
and 0.0479 is the agreement less convincing but, again, the previous figure
showed how the gap diminishes as the outer radius increases. We shall

169Universality and Conformal Invariance for the Ising Model



File: 822J L44440 . By:XX . Date:30:11:99 . Time:11:46 LOP8M. V8.B. Page 01:01
Codes: 2095 Signs: 1583 . Length: 44 pic 2 pts, 186 mm

Fig. 16. The |k, k # [1, 2,..., 32] on a disk (+) and on a cylinder (v and G) for various
inner circles.

therefore refer to the limiting distribution, approached by that on central
circles of cylinders and on very small inner circles of disks, as the bulk
behavior irrespective of the global geometry.

Another way to check that the bulk behavior is almost reached in the
middle of the cylinder is to compute the spin�spin correlation along the
central parallel. Using the nonformal map from the (infinite) cylinder to a
disk one can see that the function (_(%1) _(%2)) should be proportional
to sin&:bulk ((%1&%2)�2). The conformal exponent :bulk is 1

4 (see [MW]).
A log�log fit of (_(%1) _(%2)) as a function of sin((%1&%2)�2 gives a slope of
&0.257. We can also verify that the measure mD on the distributions on this
curve allows us to recover this :bulk by the measurement of (ei(,(%1)&,(%2))).
As in Paragraph 2.3 we did this by first smearing the functions h with a
gaussian and then truncating their Fourier expansion at N. (As before we
set N=30 and the variance of the gaussian to 2.5 mesh units.) The linear
fit of the log�log plot leads to an :bulkr&0.260, in fair agreement with the
expected value.

Although the random variable RA1 is not normal, Fig. 14 and, less
clearly, Fig. 13 show that higher Fourier coefficients are close to normal. In
fact, starting around k=8, the histograms of the RAk are graphically
undistinguishable from the normal curves whose variances are those of the
samples. One may ask quite naturally if the distribution of these variables
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is given, at least asymptotically, by the law (8) with, maybe, another con-
stant Rbulk . The linear fit for the |̂bulk

k is 4.380+0.0065k and the slope is
slightly smaller than that of the boundary, an indication that finite-size
effects are smaller in the bulk. It therefore seems likely that the variables Ak

are asymptotically normally distributed as in (8) with (Rbulk)2=2.190. The
ratio (Rbulk)2�R2

B is 2.98, very close to 3.
The existence of a nontrivial bulk behavior on curves in the plane, was

by no means initially evident and may, in the long run, be one of the more
mathematically significant facts revealed by our experiments. One supposes
that the distribution of spins in a fixed, bounded region for the Ising model
on the complete planar lattice at criticality on a lattice whose mesh is going
to 0 is such that they are overwhelmingly of one sign with substantially
smaller islands of opposite signs and that these islands in their turn are
dotted with lakes and so on. This is confirmed by the two typical states of
Fig. 12 in which the large islands of opposite spin appear only in regions
influenced by the boundary. Typical states for the cylinder are similar
(Fig. 18) but the conformal geometry is such that the bulk state is reached
closer to the boundary. The conclusion is not, apparently, that in an enor-
mous disk, thus in the plane, the integral of h against any fixed smooth
function on a fixed smooth curve is generally very close to 0, so that the
distribution of each of the Fourier coefficients RAk and IAk approaches a
$-function. Rather, they are approaching a distribution which is not trivial
but is, at least for k small, clearly not a gaussian. What we may be seeing
is the effect of the shifting boundaries of the large regions of constant spin.
Once a circle in the plane is fixed, the boundary between even two very
large regions of different spin can, as the configuration is varied, cut it into
intervals of quite different size.

Indeed the existence of a nontrivial limiting measure on the space of
distributions on the boundary was itself not certain beforehand. In spite of
the attention we gave in Section 2 to the possibility of its being gaussian for
the boundary of a circle, the exact form is perhaps of less mathematical
significance than its universality and conformal invariance.

3.3. Clarifications

In order not to encumber the initial discussion with unnecessary abstrac-
tion, we worked with the distributions mD, C([ak], G, J ). A better theoretical
formulation would be in terms of a measure mD, C on the set of real-valued
distributions in the sense of Schwartz on the oriented smooth curve C, or
if C were merely regular (thus sufficiently differentiable) on some Sobolev
space. To be more precise, the measure is on the set of distributions that
annihilate the constant functions. (To be even more precise, this is so only

171Universality and Conformal Invariance for the Ising Model



if the curve is contractible. For other curves, such as the circumference of
a cylinder, the set of distributions whose value on the constant function 1
lies in [2m? | m # Z, m{0], may have a nonzero measure. Under many
circumstances, it is small enough that it can for numerical purposes be sup-
posed 0.) To introduce the measure mD, C concretely, we need a basis for
the dual space, thus in principle just a basis for the smooth (or regular)
functions on C modulo constants. If this basis is [.k | k=1, �] then
* � [*(.k)] defines a map of the distributions into a sequence space and
a measure is just a measure on the collection of real infinite sequences,
[+1 , +2 ,...]. It would have to be defined by some sort of limiting process
from measures on RN. The simplest such measures are product measures.
Given such a measure on the space of real sequences, it defines, at least
intuitively, a measure on distributions if for almost all sequences [+k], the
assignment .k � +k extends to a distribution, thus in particular if it lies
in some Sobolev space. For example, if a parametrization x(%), 0�%�2?
of the curve has been fixed then one possible choice of the basis is the
collection

[x(%) � Reik%, x(%) � Ie ik% | k>0]

Then it is better to put the +k together in pairs and to use sequences [Ak]
(or ak=Ak �ik) of complex numbers. This has been the point of view of this
paragraph. Starting with a given parametrization, we examined the joint
distributions of the complex random variables ak .

The parametrization also allows us to introduce the measure d%�2?
and thus to identify functions with distributions. In particular, in order for
a measure on sequences to yield a measure on distributions it is necessary,
and presumably usually sufficient, that the sum

:
�

k=&�

ak eik%

converges as a distribution for almost all sequences ak . For example, if the
measure is a gaussian defined by

exp \&: :
�

k=1

k |ak |2+ (17)

then the expectation E( |ak | 2) is 1�(2:k), so that � |ak | 2�k converges almost
everywhere. As a result, the sum (17) converges almost everywhere as a
distribution. This conclusion remains valid provided only that the expecta-
tions (akal) are those of the gaussian (17), a property that according to
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the results of Section 2 the measure mD has a good chance of possessing.
Therefore, if *=�k *kak is any random variable that is a linear function of
the ak then the expectation E(*2) is calculated as though the measure were
gaussian.

Our method is numerical, so that we approximate the measure on
sequences from a large, finite scattering of functions h, or rather of their
derivatives, because the derivative H is well defined as a distribution,
although h itself is not. The distribution H is a sum of $-functions, with
mass \? at each point where the curve crosses a contour line of the func-
tion H. Since its value on the constant function 1 is the sum of those jumps,
this value is 0, as noted, whenever that sum necessarily vanishes, either
because the curve is contractible or because the cylinder is extremely long.

Although our construction required a specific parametrization, the
resulting measure on distributions may be independent of the parametriza-
tion and, more generally, even of the choice of basis. We did not attempt
to verify this. It may be useful, however, to describe an example.

When D is a disk of radius 1 with the boundary C parametrized in the
usual way by arc length %, the function h can be recovered by integration
with respect to d% from the distribution H. The measure on distributions
on C is, as we discovered, not equal to the gaussian measure associated to
a constant, 2R2

B , times the Dirichlet form Q(H), but, if we ignore the reser-
vation expressed at the end of Paragraph 2.1, the variance of linear func-
tions of the Fourier coefficients can be calculated as though it were. We
recall that to calculate Q(H ), or Q(H, H ) if we want to stress that it is a
quadratic form, we extend the function h as a harmonic function to the
interior and then

Q(H )=D(h)=D(h, h)=
1

4? | {\�h
�x+

2

+\�h
�y+

2

= dx dy

or, extending it to an hermitian form,

Q(H )=D(h)=D(h, h)=
1

4? | {} �h
�x }

2

+ } �h
�y }

2

= dx dy (18)

if we use again the symbol h for the harmonic function inside D. If we iden-
tify formally distributions with functions by means of the bilinear form

1
2? |

2?

0
h1(%) h2(%) d%=(h1 , h2)
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or, in complex terms,

1
2? |

2?

0
h1(%) h2(%) d%=(h1 , h2) (19)

and regard therefore Q and D as operators, so that Q(H )=(QH, H) and
D(h)=(Dh, h) , then, as a simple calculation with the functions eik% shows,
D has 0 as an eigenvalue of multiplicity one, eigenvalues 1

2 , 2
2 , 3

2 ,..., each
with multiplicity two, Q has eigenvalues 1

2 , 1
4 , 1

6 ,..., each with multiplicity
two and on the domain of Q, the orthogonal complement of the constant
functions, 4D=Q&1. More precisely, and this is the best form for our pur-
poses, if the Fourier expansion of h is �k akeik% then

D(h)= 1
2 :

k{0

|kak |2

or if h is real,

:
k>0

k |ak |2

Suppose now that D$ is any domain, C$ its boundary, and .$ any
smooth function on C$. The function .$ defines a linear form

* � *(.$) (20)

on distributions. By nonformal invariance, the measure on distributions on
C$ is obtained by transport of the measure on distributions on C using any
conformal transformation , from D to D$. If the measure on the distribu-
tions is in fact well-defined, independently of any choice of basis, then the
characteristic function of (20) is formally calculated as

| exp(&2R2
B(Q*, *)+i:*(.))<| exp(&2R2

B(Q*, *))

which is

exp(&:2Q(*,)�8R2
B)

if .=.$ b , and *. is the distribution such that *(.)=Q(*, *.). Conse-
quently, the probability distribution of the random variable defined by (20)
will be gaussian with variance 72 given by

1�272=2R2
B �Q(*.)
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But *.=Q&1. so that

1�272=2R2
B �2D(.) (21)

Suppose for example that D$ is a square of side ?�2 and that we
parametrize its boundary by arc length: s=s(t), s(0) being one of the
vertices. We write t=t(s) for the inverse function. The Schwarz�Christoffel
map , of the disk onto the square is depicted in Fig. 17 where the curves
intersecting at the center of the square are the image of the rays on the
disk. Although arcs of equal length on the circular boundary are mapped
to intervals of different lengths on the edge of the square, this effect is
important only close to the vertices. Thus if .$k is the function s(t) �
cos(kt) and .k=.$k b , then the distribution of the random variable defined
by .k should be gaussian with variance D(.k)�R2

B . Moreover D(.k) is
obtained from the Fourier coefficients of .k and they are calculated by
observing that, apart from a constant factor, which is unimportant, the
Schwarz�Christoffel transformation (16) restricted to the boundary w=ei%

of the unit disk can be expressed in terms of the elliptic integral of the first
kind,

F(t | 2)=|
t

0

d�

- 1&2 sin2 �

With our choice of s(0), the function s(t), for the t # [0, ?�2], is

s(t)=
?�4

F(?�4 | 2)
F \t&

?
4 } 2++

?
4

The graph of (t, s(t)) on [&?, ?] is obtained from that on [0, ?�2] by
translation by (?�2, ?�2). The function s=s(t) is odd and composition of
odd or even functions with s preserves their parity. If the basis [s(t) �
cos lt, s(t) � sin lt, l>0] is chosen and .l (t)=cos(ls(t)) (or sin(ls(t)))
written as

Cl0

2
+ :

k�1

(C lk cos kt+S lk sin kt) (22)

then the Dirichlet form is

D(.l)= 1
4 :

k�1

k(C 2
lk+S 2

lk) (23)
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For a given l the random variables RA1 and IA1 are identically distributed
on the disk, at least when the number of sites at the boundary is a multiple
of 4. On the square they were shown to be also identically distributed, at
least in the limit of the simulations, when these variables are measured with
respect to the induced parameter. However, if the arc-length parameter s
is used on the square, the two variables RAs

l and IAs
l are identically

distributed only when l is odd. The graphs of two functions cos(l,(t)) and
sin(l,(t)) are translations of each other when l is odd but not when l is
even. The variances of the random variables RAs

l and IAs
l must then be

distinguished and they are given by

(7s
RAl

)2=
1

4R2
B

:
k�1

kC 2
lk and (7s

IAl
)2=

1
4R2

B

:
k�1

kS 2
lk (24)

Using these formulas we shall compute the numbers

|s
RAl

=
l

2(7s
RAl

)2 and |s
IAl

=
l

2(7s
IAl

)2

introduced in Section 2.
The coefficients

Clk=
1
? |

?

&?
cos ls(t) cos kt dt and Slk=

1
? |

?

&?
sin ls(t) sin kt dt

are therefore needed. They can be calculated numerically. The convergence rate
of (22) is however slow. The elliptic integral F(t | 2)=�2

0 (1&2 sin2 �)&1�2 d�
behaves like (t&?�4)1�2 as t � (?�4)&. Consequently, the function s has a
similar behavior at integer multiples of ?�2 and the absolute values |Clk |

Fig. 17. The Schwarz�Christoffel map from the disk to the square. The images of the rays
of the disk are the curves intersecting at the center of the square.
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and |Slk | decrease approximately as M�k3�2. Even with the 250 first Fourier
coefficients Clk , k=1,..., 250, the Parseval identity for the function cos l,(t)
is satisfied to only five decimal digits. We decided nonetheless to restrict the
sums (24) to these 250 first coefficients. Since all the terms in D(.l) are
positive, the truncated sums will lead to larger estimates of the |'s than the
true sums.

Since we wish to compare |s
RAl

and |s
IAl

with those measured with the
simulations done on the square of side 254, it is appropriate to modify
slightly the Dirichlet form (23) to take into account finite-size effects.
Paragraph 2.2 showed that the quantity k�(272

k) is not strictly constant on
a finite lattice but grows slowly. We found that

k
272

k

=2R2
B(1+=k)

was a good approximation. (See Fig. 3.) Since the ratio k�4R2
B in (24) plays

the role of the variance, we decided to replace it by

k
4R2

B(1+=k)

The slope = is that of the linear fit appearing in Fig. 2 for the square with
254_254 sites.

Table III lists the values of |̂s
l , that is |̂s

RAl
and |̂ s

IAl
, l=1, 2, 3, 4, 5,

as measured by the simulations and the values |s
RAl

and |s
IAl

obtained
using the (truncated) sums (24) with finite-size effects introduced as dis-
cussed. The original values |̂l have been added to give an idea of the dis-
crepancy that the use of the arc-length parameter introduces. The values |s

l

and we are close to one another and the latter are always greater than the
former, probably because of the truncation.

Table III. The Numbers |̂l , |̂s
l , and |s

l for l=1, 2, 3, 4, 5
for the Square of Side 254a

l |̂l |̂s
l |s

l

1 1.480 1.380 1.388

2 1.494
2.241 2.251
0.963 0.974

3 1.505 1.365 1.386

4 1.510
1.921 1.958
1.146 1.181

5 1.520 1.451 1.499

a When they differ, the | for RA l is placed above the | for IA l .
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3.4. Conditional Probabilities

Suppose that the curve C of the previous section is the disjoint union
of two curves C1 and C2 . Then the space of distributions on C is the
product of the space on C1 and the space on C2 . We fix the model to be
the Ising model at criticality on the square lattice and denote a distribution
by � and the measure whose meaning was clarified in the previous paragraph
by mD, C(�). Then, in principle, the conditional probability mD, C(�1 | �2) on
the set of distributions on C1 is defined for each distribution �2 on C2 .
Whether this is so is not so easy to test experimentally. To approximate the
conditional probability numerically with our methods we have to choose a
neighborhood U of �2 and proceed as before, eliminating from the sample
all distributions �$=(�$1 , �$2) for which �$2 does not fall in U. We recall
that �$i is a distribution given by a sum of $-functions on Ci . First of all,
the neighborhood U is a neighborhood in an infinite-dimensional space, so
that it is going to be, in any case, very large. Secondly, we cannot eliminate
too many distributions for then the samples would be far too small. Thus
U is going to have to be enormous. The notion seems nevertheless to be
workable even at a coarse experimental level.

There are two properties that one might expect. We can introduce and
study experimentally the measure on the distributions on C1 obtained
when the spins on C2 , or in a small neighborhood of it, are all taken to
be +1. This of course presupposes some kind of compatibility of C2 with
the lattice structure, as in the examples studied where C2 passes through a
row of sites, or some way, either theoretical or practical, of specifying the
neighborhood, but granted this, we consider the measure mD, C1

(�1 | C2 , +)
obtained from this familiar condition. It is defined quite differently than the
conditional probability mD, C(�1 | 0) for �2#0. (See Paragraph 4.2.) None
the less, one could hope that they were equal. The experiments to be
described are too coarse to establish this with any degree of certainty, but
do render the expectation plausible.

The second property is the markovian property. Suppose that C1 is
the disjoint union of C3 and C4 , so that �1 is a pair (�3 , �4). Suppose
moreover��this is the essential condition��that C2 separates C3 from C4 .
Then one can hope that conditioning the measure mD, C(�1 | �2) on �4

leads to a measure mD, C(�3 | �4 | �2) that is equal to mD, C(�3 | �2), thus
the measure on the distributions on C3 when the distributions on C2 and
C4 are given is independent of the distribution on C4 . The influence of the
distribution �4 is not propagated across C2 when the distribution on C2 is
fixed.

We begin by examining Fig. 18 in which three typical states are shown,
from left to right: free boundary conditions on a cylinder of circumference
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Fig. 18. Configurations on cylinders.

199 and length 31; free boundary conditions on a cylinder of circumference
199 and length 399; and free boundary conditions on the left but + bound-
ary conditions on the right on a cylinder of circumference 199 and length 31.
The picture in the center is the familiar one: towards the middle there is a
tendency to form very large clusters of constant sign, indeed there is only
one very large (white) cluster but at the boundary the clusters are smaller.
Recall as well that for a cylinder there is conformal distortion. In Fig. 12
the phenomenon is illustrated without distortion: there is one large (white)
cluster on the left and one large (black) one on the right. In the picture on
the left of Fig. 18, the freedom to form smaller clusters is reinforced by the
proximity of the two boundaries. There is almost no bulk behavior at all.
On the other hand, in the picture on the right, the boundary condition is
forcing a single large cluster on the right and this cluster is attempting to
envelop the left boundary as well.

This qualitative description is confirmed by a calculation, for the
measures on the distributions on the left boundaries, of the numbers ark
introduced in Paragraph 2.2. The results are plotted in the diagrams of
Fig. 19 for the measure associated to the left boundary in the three cases.
In clockwise order from the upper left, they are: free boundary conditions
on a cylinder of size 199_31; free boundary conditions on a cylinder of
size 199_399; boundary conditions on the left free, those on the right con-
stant, and size 199_31. In the diagram on the lower left, they are super-
posed. The graph in the upper right is like those of Fig. 2, except that we
have used new statistics with a smaller sample, so that the graph is some-
what irregular. All graphs are pretty much the same except for the first four
or five values of k. As far as the higher values of k are concerned the two
boundaries are effectively at an infinite distance from each other. For k=1,
there is a pronounced difference between the graphs so that the distribution
of RA1 on the short cylinder is flatter than on the long cylinder. On the
other hand, when the boundary condition is imposed the value of |̂k

increases and the distribution of RA1 is peaked. The superposition of the
three curves is shown in Fig. 20.
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Fig. 19. The numbers |̂k associated with the conditional distributions. (See text.)
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Fig. 20. The distribution of RA1 for the three pairs (domain, boundary conditions)
described in the text. At the center the curves are in the order, from top to bottom: short
cylinder with constant spins on the right, long cylinder, short cylinder with both sides free.

We now take C1 to be the left boundary of a cylinder of aspect ratio
199�31 and C2 to be the right boundary. To test the assertion that
mD, C1

(�1 | C2 , +) is the conditional probability mD, C(�1 | 0), we ther-
malize for free boundary conditions at both ends of a cylinder of size
199_31 but only keep those samples for which

|RA1|<0.125, |RA2 |<0.2 - 2, |RA3 |<0.35 - 3, (25)

|IA1|<0.125, |IA2 |<0.2 - 2, |IA3 |<0.35 - 3 (26)

About 3 out of every 10,000 states satisfy this condition. So our crude
experiments will not permit a substantially smaller neighborhood of 0. In
Fig. 21, we plot the resulting collection of |̂k together with those obtained
from the previous experiment with + boundary conditions on the right
side. We see that in spite of the large size of the neighborhood, the two

Fig. 21. The numbers |̂k for mD, C1
(�1 | C2 , +) and mD, C(�1 | 0).
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Fig. 22. The distribution of RA1 for mD, C1
(�1 | C2 , +) and mD, C(�1 | 0).

graphs are quite close. It is the values of |̂1 and |̂2 that tell. The graphs
of the distributions of RA1 are compared in Fig. 22 to ensure that not only
are the variances close but also the probability measures themselves.
Without being at all conclusive, the experiment encourages the belief that

mD, C(�1 | 0)=mD, C1
(�1 | C2 , +).

In order to test whether the probabilities are markovian we considered
on the one hand a cylinder of size 199_31 on which we thermalized, keeping
only the distributions that on the right boundary satisfied the conditions

|RA1|<0.125, |RA2 |<0.2 - 2, |RA3 |<0.35 - 3,
(27)

0.3�IA1�1, |IA2 |<0.2 - 2, |IA3<0.35 - 3

On the other hand we considered a cylinder of size 199_61 on which
we thermalized with spin + as the boundary condition on the right and
then selected only those states satisfying the conditions (27) on the dis-
tributions for the central meridian. We then examined the resulting
measure on the distributions on the left boundary, in particular the dis-
tribution of RA1 and IA1 . The markovian hypothesis asserts that, when
we fix the distribution on the center, the measure on the distributions on
the left boundary is completely shielded from the boundary conditions on
the right, although once again we are prevented by the necessity of allow-
ing the rather large open neighborhood (27) from actually fixing the dis-
tribution on the center. We can only impose very crude constraints on the
first few Fourier coefficients. For the experiments on the smaller cylinder
about 3 samples in 10,000 are kept; on the larger, curiously enough, about
1 in 1,000.
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Fig. 23. Test of the markovian hypothesis. The numbers |̂k for the two cylinders with RAk

on the left and IAk on the right.

In Fig. 23 the |̂k are plotted and compared once again, on the left
those for RAk , on the right those for IAk . For RA1 the value of |̂1

is slightly larger for the broader cylinder; the other values are very close.
For IA1 , the value is smaller for the narrower cylinder, and the other
values are again very close. In Fig. 24 a similar comparison is made of the
distributions of RA1 on the left and of IA1 on the right. As is to be expected
from conditions 27, the distribution of IA1 , is shifted to the right. It is
more shifted for the narrow cylinder than for the broad. The results
encourage the belief in the markovian hypothesis, even though it is hard to
imagine that experiments as coarse as these could ever successfully refute
the hypothesis because some shielding is inevitable. The question is rather
how much.

4. CYLINDERS OF VARIABLE LENGTH AND THE PHASE

We have seen in Paragraphs 2.3 and 3.2 that the measures mD, C can
be used to recover the nonformal exponent associated to the spin�spin

183Universality and Conformal Invariance for the Ising Model



File: 822J L44454 . By:XX . Date:30:11:99 . Time:11:54 LOP8M. V8.B. Page 01:01
Codes: 1481 Signs: 949 . Length: 44 pic 2 pts, 186 mm

Fig. 24. The distributions on the left boundary as a function of RA1 (on the left) and of IA1

(on the right).

correlation at the boundary and in the interior. Various formulas in the
theory of free fields suggest that critical exponents might also be obtained
from the analogue for the field h of the variable x defined in Paragraph 2.1
for the free boson ,� . We refer to this variable as the phase, and our
examination in this section, although brief, indicates clearly that it also can
be used to reproduce exponents of the classical Ising model.

The variable x for the boson field measures the difference between the
constant terms in ,1 and ,2 , the restrictions of ,� to the two boundaries of
the cylinder. It takes its values in the interval [0, 2?R) where R is the
radius of compactification. (See Paragraph 2.1.) An analogue for the Ising
model on the cylindrical LV_LH square lattice Gg is defined using

x$=
1

LV
:
p

(h( p+$)&h( p))
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where $ is the unit vector in the horizontal direction and the sum runs over
all sites p in the lattice that have a tight neighbor. Because the jumps of h
are chosen at random between \?, it is natural to study the distribution
of

x=x$ mod 2?

instead of x$. The normalization of x is such that a closed curve of discon-
tinuity in h that wraps around the cylinder, in other words that is noncon-
tractible, gives a contribution of \? to x. Clusters intersecting the bound-
ary contribute ?2�LV to x where 2 is the numbers of boundary sites inside
the cluster. However contractible curves surrounding clusters of constant
spins not intersecting the boundary do not contribute.

In Section 2 we introduced, for the cylinder D, the measure

mD([ak], [bk])= lim
N � �

lim
a � 0

ma, N
D ([ak], [bk])

defined on the space hI with coordinates ([ak], [bk]), k # Z"[0]. As we
observed in Paragraph 3.3, this can also be regarded as a measure
mD(�1 , �2) on a space of distributions, one �1 on the circle at one end of
the cylinder and one �2 on the circle at the other end. We could as well
have defined

mD(�1 , �2 , x)=mD([ak], [bk], x)= lim
N � �

lim
a � 0

ma, N
D ([ak], [bk], x)

taking the variable x into account. The probability mD(�1 , �2) is a condi-
tional probability, thus��speaking imprecisely��we have integrated over
the variable x. Writing all measures informally as measures absolutely con-
tinuous with respect to a Lebesgue measure on the underlying spaces, we
express this as

dmD([ak], [bk])=dmD(�1 , �2)=ZD(�1 , �2) d�1 d�2

with

ZD(�1 , �2)=|
2?

0
ZD(�1 , �2 , x) dx

This is a convenient notation that avoids technical explanations about con-
ditional probabilities and also reminds us of the connection between the
measures and partition functions.
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4.1. The measure mq(x)

We first consider dmq(x)=dmD(x)=Zq(x) dx, D=D(q), with

Zq(x)=| ZD([ak], [bk], x) `
k

dak dbk

=| ZD(�1 , �2 , x) d�1 d�2

the choice between the three notations ([ak], [bk]), ([Ak=ikak], [Bk=
ikbk]) and (�1 , �2) being a matter of convenience. We shall parametrize
by the variable q the cylinder D in the plane of length lA, l=ln(1�q), and
circumference 2?A, with A arbitrary. It is mapped to an annulus the
ratio of whose inner and outer radii is q by z � exp(z�A). The measure is
normalized

|
2?

0
Zq(x) dx=1

and its Fourier expansion is

Zq(x)=
1

2?
+ :

k{0

&k(q) eikx

We can try to expand each coefficient in a series of powers of q

&k(q)= :
�

j=0

ck(:j ) q:j

We expect from the original calculations on the Ising model or from argu-
ments of conformal field theory that :0=0, although we admit ck(:0)=0,
and that :1= 1

8 . The remaining :j should be at least 5
8 . (The usual argument

of nonformal field theory would select the exponents 0, 1
8 and 1, and all

those differing from these by two positive units, but it requires unitarity. It
is not yet clear to us to what extent unitarity is pertinent in the present
context. The whole Kac spectrum could intervene��at least our experi-
ments are not fine enough to rule out := 5

8 which is smaller than :=1.)
We have run two sets of experiments to measure the smallest exponent

in &1(q), one for LV=59, the other for LV=117. As q � 0, that is for long
cylinders, the graph of Zq is practically of period ?, instead of 2?, and the
odd Fourier coefficients c2k+1(q) www�q � 0 0. The physical reason for this
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behavior is that, for very long cylinders, several noncontractible curves of
jumps in h are likely to occur and configurations with an even or an odd
number of these curves will arise in approximately the same numbers.
Figure 25 shows, for the long cylinder of size 117_801, the distribution of
the variable x$ (before the identification x$tx$+2?) and of the variable x.
The peaks for x$ are centered on the integer multiples of ?, clearly underlin-
ing the role of noncontractible curves of jumps. The figure shows configura-
tions with n curves, |n|=0, 1, 2, 3, 4, and the data also indicate that |n|=5
and 6 were obtained in the sample of 1.6_106 configurations. Even for
|n|=4 the probability is fairly large. It should be remembered that only 1

16

of the configurations with 4 noncontractible curves will contribute to the
peak around 4?. The distribution mq(x) is, for this cylinder, almost per-
fectly periodic of period ?.

Figure 26 is a log�log plot of &1 as a function of q. The data for the
cylinders with LV=59 are marked by ``v'' and those with LV=117 by
``+''. The shortest cylinders were 59_27 and 117_53. We measured
several other longer cylinders for both LV 's. We decided to discard for
botch the figure and the fits the measurements of &̂1 whose 950 confidence

Fig. 25. The distributions of the variables x$ and x for the cylinder 117_801.
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Fig. 26. Log�log plot of the Fourier coefficient &̂1 as a function of q.

interval was more than 50 of the measurement itself.5 The linear fits of the
log�log pairs give a slope of 0.12506 for LV=59 and of 0.12478 for
LV=117. The line on the figure is the latter fit. The value :1= 1

8 appears
clearly. We did not check its universality but there is no reason to doubt
it.

4.2. The ratio Z+&(q)�Z++(q)

Let Z++(q) and Z+&(q) be the relative probabilities that with con-
stant boundary conditions on a cylinder of parameter q the spins are equal
at opposite ends or unequal. There is a well-known formula due to Cardy
[C1],

Z+&(q)
Z++(q)

=
/1(q)&- 2 /2(q)

/1(q)+- 2 /2(q)
(28)

with

/1(q)= `
m>0, m odd

(1+qm),

/2(q)=q1�8 `
m>0, m even

(1+qm)
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5 The Fourier coefficients are given by &k=�2LV
i=1 ci pi where ci=cos((i& 1

2) 2?k�2LV ) and pi

are the frequencies for the 2LV bins in which that data are distributed. We use ni for the
number of data in the i th bin and N for the sample size. Hence p̂i=ni �N. Since the distribu-
tion of the ni is a multinomial MULT(N; n1 , n2 ,..., n2LV&1), the first moments are (ni)=Npi

and (ni nj) =N(N&1) pi pj+Npi $ij . Therefore Var(&k)=(1�2N ) �i{ j pi pj (ci&cj )
2. For

the cylinder 117_801 discussed above (qr &43.0), the measured &̂1 with the 950 con-
fidence interval is 0.00468\0.00110 even though the sample was larger than 1.6_106. It was
used for the fit.



We could, in experiments, fix the spins along one or both of the two
ends of the cylinder to be constant. This leads to alternative measures
mq([bk], x), in which the spins at the left end are taken to be +1, and
(Z+&(q), Z++(q)). The question arises whether

mq([bk], x)=mq([ak=0], [bk], x) (29)

and whether

Z++(q) $0+Z+&(q) $?=mq([ak=0], [bk=0], x) (30)

These two equations require some explanation. The measure mq([ak=0],
[bk=0], x) is understood, in so far as it can be assumed to exist, to be
the conditional probability defined by the probability measure mq([ak],
[bk], x), the conditions being ak=bk=0, or equivalently Ak=Bk=0,
\k # Z"[0]. Experimentally this means that it is a distribution that we
approximate just as we approximate mq([ak], [bk], x) itself except that we
discard all samples for which the restrictions h1 and h2 at the ends of the
cylinder do not lie in a suitably chosen neighborhood of 0. The neighbor-
hood is thus to be as small as possible but large enough that we do not
reject so many samples that the number of useful samples becomes impossibly
small. We define mq([ak=0], [bk], x) in the same manner, but the condi-
tion is now that ak=0, \k # Z"[0].

If (30) is valid the distribution defined by

|
|Ak|<ck

|
|Bk|<ck

Zq([Ak], [Bk], x) `
k

dAk dBk (31)

with sufficiently small ck 's should be approximately a(q) $0+b(q) $? , thus
a sum of two $-functions with coefficients whose ratio b�a is given by (28).
Similarly the distribution

|
|Ak|<ck

Zq([Ak], x) `
k

dAk (32)

provides another ratio b�a to be compared with (28).
Measuring these two ratios b�a is difficult. The ratio Z+& �Z++

decreases from 1 at q=0 to 0 at q=1. Large ratios Z+& �Z++ , those easier
to measure, correspond therefore to long cylinders. For these the variables
Ak and Bk are independent and their distributions are known from pre-
vious sections. The effect of the constraints can therefore be estimated by
using rk=Probq=0( |Ak |<ck). Even by imposing restrictions |Ak |<ck and
|Bk |<ck only for k=1, 2, 3, leaving the other variables free, a choice of
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r1=r2=r3t0.1 cuts the number of admissible configurations by a factor
of one million for the measurement of (31) and the measurement is imprac-
ticable. For shorter cylinders (q � 1), the ratio Z+& �Z++ drops quickly.
For a circumference four times the length, the ratio is less than 2

1000 , again
difficult to measure. We limited ourselves to a small window of r=l�2?,
choosing six values corresponding to values of q increasing by a factor of
approximately 4 at each step. Table IV gives the values of r, q, the (rather
small) lattices we used and Cardy's prediction. The ratios b�a were mea-
sured for the constraints:

c1t0.377 c2t0.653 c3t0.929 (33)

the others being infinite. These numbers correspond to the following proba-
bilities

Prob( |A1|<c1)=0.2 Prob( |A2 |<c2)=0.3 Prob( |A3 |<c3)=0.4

if the cylinder were of size 79_157 like the one used in Section 2. For this
long cylinder and these constraints applied at both extremities, only a
fraction (0.2_0.3_0.4)2

t0.0006 of the configurations would be used. We
observed that for the shorter cylinders of Table IV more configurations
passed the test: The difficulty of getting proper samples for the measure-
ment of (32) is of course less acute.

Three sets of measurements were taken. For the first set the constraints
given by (33) were applied at both extremities of the cylinders and is thus of
the form (31). In Table IV it is refered to as const�const for ``constrained.''
For the second they were applied at one extremity while the spins at the
other were forced to be the same though they were allowed to flip simulta-
neously during the Swendsen�Wang upgrades. This corresponds to (32)
and is refered to as const� fixed. The last set is the measurement of the ratio
Z+& �Z++ , that is the case fixed� fixed. For each lattice enough configura-
tions (>20 million in each case) were generated so that at least 30000

Table IV. Ratio b�a Measured for Several Cylinders

LV_LH 79_122 79_104 79_86 79_68 79_52 79_34
r=LH�LV 1.544 1.316 1.089 0.861 0.658 0.430

q 0.0000611 0.000256 0.00107 0.00448 0.0160 0.669
Z+&�Z++ 0.408 0.331 0.249 0.165 0.0927 0.0260

const�const 0.419 0.341 0.276 0.193 0.117 0.0419
b�a const�fixed 0.411 0.338 0.259 0.179 0.101 0.0301

fixed�fixed 0.4071 0.3289 0.2494 0.1640 0.0916 0.02539
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contributed to the integral (31). Far larger samples were obtained for the
two other sets.

Because of the small sample, especially in the case (31), large statistical
variations are expected between neighboring bins and smoothing provides
an efficient tool to identify the two local maxima around x=? and x=0
whose ratio was used as a measurement of b�a. These measurements appear
in the last lines of Table IV. (Smoothing was done as in Paragraph 2.2.
The smoothing parameter was chosen as if the distribution of x were
approximately the sum of two gaussians centered at %=0 and %=?. The
ratios b�a did not seem to be very sensitive to the exact choice of the
smoothing parameter. Of course the case fixed� fixed does not require any
smoothing since the distribution is actually of the form a(q) $0+b(q) $? .)
The measurements for constrained�constrained and constrained�fixed are
systematically larger than the predicted values though they are very close,
in fact closer for longer cylinders than for shorter ones.

It is useful to see how the choice of constraints changes the measured
ratios b�a and whether the distribution of the variable x is at all similar to
the proposed sum a$0+b$? . For the cylinder 79_52 we compared four
sets of constraints for the measurement of (31). The first set consisted of no
constraint at all, that is all the ck 's were infinite. The second was the one
used before and the finite ck 's for the third and fourth sets were

c1t0.259 c2t0.653 c3t0.929

and

c1t0.259 c2t0.441 c3t0.614 c4=0.782

These ck 's correspond to r1=0.1, r2=0.3, r3=0.4 and r1=0.1, r2=0.15,
r3=0.2, r4=0.25. For the fourth set only 3152 configurations were
admissible out of the 200 millions generated and they were distributed in
the 2LV=632 bins. Errors are large in this case. Instead of smoothing as
before we compared the four sets by expanding their histograms in Fourier
series keeping only the first ten terms. The ratios b�a are sensitive to the
number of terms kept. Only the first two digits of the ratios given below,
at the end of this paragraph, are reliable. The smoothed distributions are
shown on Fig. 27. If the distribution goes to a$0+b$? as the constraints
become more stringent then the peaks at 0 and ? should be narrower and
the distribution around ?�2 and 3?�2 should go to zero as one goes to the
first to the fourth set. This is what happens with the four curves. At ?�2 the
top curve is that with no constraint and the one closer to zero corresponds
to the fourth set of constraints. Even though the values of a and b for the
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Fig. 27. The distribution of x for four different sets of constraints [ck].

three last sets are quite different, as they should be, their ratios are
strikingly close: 0.120,0.109 and 0.114.

Finally we compared the ratios b�a for the three lattices 79_52,
158_104 and 316_208 using always the constraints (33). The numbers of
admissible configurations were 40409, 9931 and 8816 and the ratios b�a,
obtained again after truncation of their Fourier series, are 0.120, 0.129 and
0.130. These numbers are the same within the statistical errors though the
values of a and b are again different. Figure 28 shows the three distribu-
tions, the sharper peaks being for the smaller lattices. It seems that smaller
ck 's are necessary for finer lattices if the peaks are to be as sharp as for the
coarse lattice.

It is not clear whether the above measurement technique can repro-
duce accurately the ratios Z+& �Z++ with a proper choice of the ck 's and
the size of the lattice. The very superficial analysis we have done does not
indicate any decrease in the small gap appearing in Table IV for the short
cylinders. Still the measurements and the predictions are very close.

Fig. 28. The distribution of x for the constraints (33) on the three lattices 79_52, 158_104
and 316_208.
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4.3. The Measure mq([ak], [bk], x) for Long Cylinders

Some identities are suggested by the previous experiments. For infi-
nitely long cylinders the following hypothesis seems natural

Zq=0([ak , ], [bk], x)=|
2?

0
Zq=0([a&k], y&x) Zq=0([bk], y) dy (34)

As evidence, integrate with respect to the ak and bk . On the left we obtain

:
k

&k exp(ikx)

and on the right

2? :
k

|+k |2 exp(ikx)

if

| Z0([bk], x) ` dbk=:
k

+k exp(ikx)

We have, by definition, &0=+0=1�2? and &k=+k=0 if k is odd. Experi-
ments on a cylinder with 59_401 sites yield

&2t0.00273 +2t0.0208 2?+2
2t0.00271, (35)

&4t0.0000267 +4t0.00279 2?+2
4t0.0000488 (36)

Unfortunately only the first line carries any conviction. It may not be
possible to measure &4 with any accuracy.

The measure dm0([ak], x)=Z0([ak], x) dx may be of some interest,
but we cannot offer any precise hypotheses. It can be expanded in a
Fourier series.

Z0([ak], x)=:
j

+j ([ak]) exp(ijx),

in which +0([ak])#1 and +j ([ak]){0 for j odd. Then, for example,
+2([ak]) is a function of [ak], or equivalently, of [Ak], but, in spite of
considerable effort, we have no idea what this function might be.

A simpler function is

| +2([ak]) `
k�2

dak= f ( |A1| ) (37)
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Fig. 29. The second Fourier coefficient +2 as a function of |A1|.

The experiments indicate that

f (x)ta
sin(bx?)

(bx?)
(38)

with at0.415 and bt0.603, but this can be no more than an approxima-
tion, as Fig. 29 indicates. (It was obtained for the cylinder 157_1067 with
a sample of more than a million configurations. The error bars are
indicated.)

The functions +j ([ak]) possess little symmetry. They are invariant
under a rotation, thus under a simultaneous transformation of all variables
ak � eik%ak , % arbitrary, but not obviously under anything else, so that for
example,

| +2([ak]) `
k�3

dak

is a function of three variables, |A1|, |A2 | and arg(A2
1 �A2). The functions

+j ([ak]) are intriguing, and we would have very much liked to discover
more about them.

5. CROSSINGS

5.1. Events and the Two Hypotheses

Crossings are one of the main order parameters for percolation
models. Consider, for example, a rectangle covered by a regular lattice.
A configuration is fixed when each vertex has been declared open or closed
and this configuration has a crossing if it is possible to move on open sites
joined by lattice bonds from the left side of the rectangle to the right one.
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A probability is usually defined on the set of all configurations by fixing the
probability p that a site is open, so that a site is then, of course, closed with
probability 1& p. The probabilities for each site are independent but equal.
In the limit of mesh length zero, the probability of such horizontal crossing
is known (rigorously) to have a singular behavior as a function of p, being
0 for p< pc and 1 for p> pc , for a certain constant pc # (0, 1) that depends
on the lattice. This definition can be extended readily to the Ising model by
replacing crossings on open sites by crossings on spins of a given sign, say,
for example, of positive sign. The probability of crossings on clusters of +
spins is not a familiar order parameter for the Ising model, and it is not
even clear that it is not trivial, thus identically 1 or identically 0. We
examined it, at first, only out of idle curiosity, following a suggestion of
Haru Pinson and were somewhat astonished to discover that it is far from
trivial. With hindsight, it does have some immediately appealing features
and has been studied before although not with the same goals [KSC]. It
is related to spontaneous magnetization and to the geometry of the main
cluster. It even turns out to share striking properties of the percolation
crossings: universality and conformal invariance [LPS]. Whether a for-
mula for it analogous to that of Cardy [C2] for percolation remains an
open question. We recall the definitions.

Let D be a domain and D$ a closed subset of D. Let :=[(:1 , :2),...,
(:2n&1 , :2n)] and ;=[(;1 , ;2),..., (;2m&1 , ;2m)] be sets of n and m pairs
of intervals in the boundary of D$ such that the 2(m+n) intervals are
pairwise disjoint. (In fact, the intervals need not be in the boundary of D$
but these are the only cases we treated.) Let lattice G be superimposed
upon the domain D. Let 1 be a configuration for the Ising model (G, J ) on
D and 1 $ its restriction to D$. We shall say that the event E specified by
the data (D, D$, :, ;) occurs for the configuration 1

(i) if for every pair (:2i&1 , :2i ), i=1,..., n, there is a connected
cluster of + spins for 1 $ that intersects both :2i&1 and :2i

(ii) and if for no pair (;2j&1 , ;2j ), j=1,..., m, is there a connected
cluster of + spins for 1 $ that intersects both ;2j&1 and ;2j .

(For percolation the definition of an event is simpler as the introduction of
the larger domain D is superfluous, so that the measure on the configura-
tions on D$ is independent of the choice of D. Thus one takes D=D$.) Let
Ga be the lattice G shrunk by the factor a and let ? (G, J ), a

E be the probability
of the event E=(D, D$, :, ;) for the Ising model (Ga , J ) at its critical point,
then ? (G, J )

E will be defined as

? (G, J )
E = lim

a � 0
? (G, J ), a

E
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if the limit exists. The two hypotheses of universality and conformal
invariance are then identical to those proposed in [LPS] for percolation.

Hypothesis of Universality. For any pair of Ising models (G, J )
and (G$, J$), there exists an element g of GL(2, R) such that

? (G, J )
E =? (G$, J$)

gE , for all events E (39)

Hypothesis of Conformal Invariance. Let (Gg , Jg) be the
Ising model on the square lattice with critical coupling Jg . Let , be a map
satisfying the same requirements as in the hypothesis of conformal invari-
ance of Section 3. Then

? (Gg , Jg)
E =? (Gg , Jg)

,E , for all events E (40)

It is best to observe explicitly that the map , acts on both D and D$,
so that if D is the whole plane there are very few admissible ,. The follow-
ing two paragraphs describe simulations done to examine these hypotheses
when D=D$ (Paragraph 5.2) or D$ / D (Paragraph 5.3).

5.2. D=D$

For the first events to be considered we take D=D$. Their description
is simple when the geometry of D is that of a rectangle. We introduce the
notation ?h(r) and ?v(r), instead of ?E , for events E occuring on D, a rec-
tangle with aspect ratio r=width�height, with a single pair (:1 , :2) and an
empty ;. For the probability of horizontal crossings ?h the two intervals :1

aud :2 are the left and right sides and for the probability ?v of vertical
crossings, the top and bottom. The probability ?hv(r) will give an example
of an event with two pairs :=[(:1 , :2), (:3 , :4)]. It is the probability of
having simultaneously horizontal and vertical crossings in a rectangle D of
aspect ratio r. Note that the number ?h(r)&?hv(r) is the probability to
have a horizontal crossing without having a vertical one. It thus provides
an example of event E with one pair : and one pair ;. Finally we introduce
?A

h (r) and ?A
v (r) whose corresponding events have a single pair (:1 , :2).

For ?A
h , :1 is the vertical segment splitting the rectangle in two parts of

equal areas and :2 the right side. For ?A
v , :1 is the horizontal segment in

the Middle of the rectangle and :2 the top side. For these two probabilities,
we could also have taken D$ to be the half-rectangle bounded by [:1 , :2]
because a path joining :2 to :1 reaches :1 before it leaves this half-rec-
tangle, so that the sites outside the half-rectangle are superfluous.
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Two difficulties limit the precision of the numerical measurements. The
first one is the limitation due to a choice of convention and was discussed
at length in [LPPS]. Since ? (G, J )

E are approximated by measurements on
finite lattices, the exact position of the domain D with respect to the lattice
must be specified by convention; or, equivalently, a prescription must be
given for calculating r for a rectangle with LH sites in the horizontal direc-
tion and LV in the vertical one. To examine the sensitivity to convention
consider an extreme case. Suppose that in convention I the width is that of
the narrowest rectangle containing the LH horizontal sites and that in con-
vention II, the width is that of the widest. For the square lattice oriented
so that its bonds are parallel to the sides of the rectangles, the difference
between the two widths is 2 mesh units. If both conventions measure the
height in the same way, the discrepancy for ?h between the two conven-
tions is

2
LV

|?$h(r)|

the prime denoting a derivative. These numbers can be estimated from the
data of Table VII. Table V gives an order of magnitude for this limitation
on precision for the two probabilities ?h and ?A

h at the center (r=1) and
at the extremities (r=0.1361 and 7.353) of the range of the aspect ratio we
measured. Our conventions are given in the appendix; whatever they are,
the above limitation is unavoidable.

To confirm the conformal invariance we also measure all these proba-
bilities for comparable geometries on the disk and the cylinder. The
Schwarz�Christoffel map can be chosen so that the four vertices of the
rectangle of aspect ratio r correspond to the four points \e\i% for some
% # [0, ?�2], on the unit circle. Notice that r=0 corresponds to %=?�2,
r=1 to %=?�4 and r=� to %=0. The slope of the function %(r) at r=0
is zero. This means that the sensitivity to convention is magnified for values
of % close to ?�2. For example we measured the probabilities ? in the

Table V. Sensitivity to Convention and Statistical Errors for a Sample of
200000 for Three Values of r on a Lattice Containingr40000 Sites

r ?h
2

LV
|?$h | Statistical error ?A

h
2

LV
|?A

h $| Statistical error

7.3 0.02 3_10&4 6_10&4 0.12 1_10&4 1_10&3

1.0 0.50 3_10&3 2_10&3 0.66 3_10&3 2_10&3

0.14 0.98 2_10&3 6_10&4 0.99 5_10&3 3_10&4

197Universality and Conformal Invariance for the Ising Model



File: 822J L44468 . By:XX . Date:30:11:99 . Time:11:55 LOP8M. V8.B. Page 01:01
Codes: 2694 Signs: 2140 . Length: 44 pic 2 pts, 186 mm

rectangular geometry for five different values of r in the range [0.1361,
0.1647]. The corresponding range of % is [1.57051, 1.57076] and, on the
disk of radius r=300.2 mesh units that we used, at most one site can be
contained along the boundary in this interval. This is even worse for the
corresponding geometry on the cylinder of size 397_793 where the ?'s
have also been measured. Such measurements are too imprecise to be use-
ful and we measured the probabilities, on the disk and the cylinder, only
for the % 's corresponding to the forty-one values in the middle of the
eighty-one we used for the rectangular geometry. The arc between the two
smallest as well as the two largest % 's among these 41 values is about 3.7
mesh units. Since we have taken the sites in the angles (?&%, ?+%),
(&%, %) to define the pair of intervals (:1 , :2), it is clear that a rather large
systematic error is to be expected.

Finite-size effects are the origin of the second difficulty. Fortunately
the relation ?h(r)+?v(r)=1 is verified for the triangular lattice, even for
finite ones. This is a well-known Identity for percolation and the argument
for its validity here is the same. For the other pairs (G, J ), this relation is
not verified for finite lattices, that is ? (G, J ), a

h +? (G, J ), a
v {1. Nevertheless, if

universality holds, it should be satisfied for the other pairs (G, J ) in the
limit of zero mesh. Departure from zero of the quantity |1&? (LH, LV )

h &
?(LH, LV )

v | for r=LH�LV is therefore a measure of finite-size effects. Inter-
preted differently, this quantity is a measure of the error made on ?h(r)
when the number ? (LH, LV )

h is used in its stead. A verification for a square
domain covered by the square lattice indicates that ? (Gg , Jg)

h (r)+
?(Gg , Jg)

v (r)=1 is likely to hold when the number of sites goes to infinity.
The log�log plot of Fig. 30 shows that (1&?h&?v) and LH are related by
a power law. (The five points correspond to squares with 25, 50, 100, 200
and 400 sites along their edges.) The slope is 0.437 and unlikely to be

Fig. 30. Log�log plot of 1&?h&?v measured on a square as a function of the linear number
of sites.
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universal. The crossing probabilities ?h and ?v on the square lattice for the
square (r=1) of size 200_200 were measured to be 0.4963 and 0.4964. The
gap is of order of 3.5_10&3, comparable to the value of 2?$h(r)�LV at this
point. Note finally that, even though ?h(r)+?v(r)=1 holds for finite rec-
tangular subsets of the triangular lattice, it does not follow that ?h(r) is
equal to ? (LH, LV )

h as finite-size effects could alter both ? (LH, LV )
h and

?(LH, LV )
v while keeping their sum equal to 1.

The five plots in Figs. 31 tot 33 show all the data available: the
probabilities for 81 values of the aspect ratio for the rectangles and 41 for
the disk and the cylinder. For the rectangles, 4 different Ising models were
studied: the three regular lattices with isotropic coupling and the square
lattice with the anisotropic coupling used in Section 3. Each figure contains
therefore six sets of measurements, four for the rectangles, one for the disk
and one for the cylinder. The cylinder is treated as though it were infinitely
long and the crossings are from an interval on one end to another disjoint
interval of the same length on the same end, the intervals being chosen so
that their position on the cylinder is conformally equivalent to that of two
opposite sides on a rectangle. Because of the large amount of information

Fig. 31. log ?h�(1&?h) and log ?v �(1&?v) as a function of log r.
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on these figures, the error bars were not drawn. Some of the 950 con-
fidence intervals for the measurements of ?h were listed on Table V and
the difference of the extreme values of these intervals is equal to 0.07 at
r=0.136, 0.02 at r=1.000 and 0.07 at r=7.351 for the variable
log ?h�(1&?h) that appears in Fig. 31. (For the square lattice, the con-
fidence intervals on the probabilities are a factor 1�- 5 smaller since the
sample was 5 times larger.) The vertical dimension of the dots on this
figure is approximately 0.065 and thus comparable to the statistical errors
or larger than them.

In all the figures, one sees clearly some spreading of the data at the
two extremities of the range of r. The data for the disk and for the cylinder
also fall slightly beside those for the rectangles around the extreme values
of their range (log rt\1). These small discrepancies can all be explained
by the above two limitations. First, for all the pairs (G, J ) but the isotropic
triangular lattice, the quantity ?h+?v is less than one. It is thus likely that
finite-size effects tend to decrease both ?h and ?v . Since for log rt\2, one
of the linear dimensions of the rectangle is half what it is around log rt0,
the values of ?h and ?v should be spread more at the extremities than at
the center of the range of r; and ? (q)

h should be the largest of all
measurements. This is what is observed though the spread is noticeable
only when the small linear dimension is in the direction of the crossing.
Second, by keeping the sites inside the sector (&%(r), %(r)) or (?&%(r),
?+%(r)), the number of sites (necessarily integral) is underestimated, lead-
ing to probabilities lower than what universality would predict. This is
again what is observed. But these discrepancies are rather small. As can be
seen from the figures the agreement is remarkable.

Only for the isotropic Ising model on the square lattice is ? (LH, LV )
h

strictly equal to ? (LV, LH )
v . It is then sufficient to measure the five proba-

bilities ?h , ?v , ?hv , ?A
h , ?A

v for 41 values of r to cover the same range. We

Fig. 32. log ?hv as a function of log r.
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Fig. 33. log ?A
h �(1&?A

h ) and log ?A
v �(1&?A

v ) as functions of log r.

profited from this coincidence and substantially increased the sample in
order to measure the probabilities with very high accuracy. In this case
each sample contained at least one million configurations. For the other
models we used samples of at least 200000 configurations. As can be seen
from Table V, even the smaller sample size yields statistical errors at worst
of the same order of magnitude as the sensitivity to conventions. Table VII
lists the crossing probabilities ?h , ?v , ?hv , ?A

h , ?A
v for the isotropic Ising

model on the square lattice; Table VIII lists them for the triangular lattice.
This table gives an idea of both the difference between the various proba-
bilities as measured for two different Ising models and the isotropy of the
probabilities: the pairs (?h , ?v) and (?A

h , ?A
v ) are approximately symmetric

under the exchange of r W r&1 even though the lattice is not invariant
under a rotation of ?�2.

For percolation, Cardy's formula predicts the following asymptotic
behavior

log ?perco
h (r) ww�r � � &

?
3

r+constant
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Fig. 34. Fits of the asymptotic behavior of ?h : (a) log ?h(r) and (b) log(1&?h(r)).

or equivalently

log(1&?perco
h (r)) ww�r � 0 &

?
3r

+constant

The data for the Ising model behave similarly. We used those for the tri-
angular lattice since they respect closely the relation ?h(r)+?v(r)=1. We
rejected the ten points at both extremities of the spectrum of r because they
carry the largest finite-size effect. The 30 remaining points with largest r
were fitted to log ?h(r)ra+br and the 30 with smallest r were fitted to
log(1&?h(r))rc+d�r. The fits appear in Fig. 34. The constants b and d
turned out to be &0.1672? and &0.1664?. A natural guess for both con-
stants is &?�6.

5.3. D$ / D

We measured the crossing probabilities from one curve Ci to another
one Cj on the cylinder, 0�i< j�4, and for the corresponding configura-
tions on the disk. (The curves Ci have been introduced in Section 3.) The
simulations were done on the cylinder with 397_793 sites and on the disk
of radius 300.2 mesh units. The results are tabulated in Table VI. In each
cell the number on top is the probability for the disk, the one on the
bottom that for the cylinder and, again, the vertical bar ``|'' is used as in
Section 2 to give the statistical errors. The agreement is convincing even
though the probabilities for the disk are systematically larger than those for
the cylinders. Again the geometries of the disk and the cylinder are not
quite conformally equivalent. Only if the cylinder is infinitely long can one
hope to have perfect agreement. Since the relative gap increases as the two
curves Ci and Cj move closer to the middle of the cylinder, the shortness
of the cylinder is a likely explanation for the discrepancy.

Since the numbers of Table VI are all close to 1.0, one more example
of crossing probability was measured. The event E for the cylinder (=D)
is given by the following data: the domain D$ is delimited by the curve C2
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Table VI. Crossing Probabilities from One Curve Ci to Another Cj for the Disk
and the Cylinder

C1 C2 C3 C4

C0 0.99998 | 1 0.9976 | 1 0.9634 | 4 0.8465 | 9
0.999979 | 5 0.99741 | 6 0.9631 | 2 0.8456 | 4

C1 0.99958 | 5 0.9727 | 4 0.8541 | 8
0.99932 | 3 0.9699 | 2 0.8510 | 4

C2 0.9848 | 3 0.8643 | 8
0.9827 | 2 0.8614 | 4

C3 0.8995 | 7
0.8973 | 4

and the right-hand side of the cylinder and :1 and :2 are the two intervals
on C2 that correspond to the forty-seventh value of the aspect ratio r con-
sidered in the previous paragraph (r=1.35). The data for the disk are the
nonformal images of those of the cylinder. For the disk and the cylinders
the numbers ?E are 0.412 | 1 and 0.4096 | 6 respectively.

Another interesting choice is D$ / D=R2. That meads measuring
crossings on domains D$ in the bulk. We have seen that the |bulk

k are larger
than those at the boundary by approximately a factor of 3. The corre-
sponding variances 72

k are consequently smaller and the number of large
clusters intersecting the central meridians of the cylinder is also smaller.
Are there enough of them to break crossings? Or is ?bulk

h (r) a trivial func-
tion, namely equal to 1

2 for all r?
Such a measurement would amount, in an ideal situation, to ther-

malizing an infinite lattice Z2 and then measuring crossings on finite D$
inside this lattice. Only the usual limitations (convention and finite size
of D$) would then have to be dealt with. To do the actual simulations, the
first idea is to truncate D to a finite though large lattice and to choose D$
as the largest domain possible inside a region in which the behavior of the
spins is as close as possible to the bulk behavior. With our present com-
puters, a lattice size of practical use contains about 106 sites. If R2 is
approximated by a square lattice, then it would be of size 1000_1000. The
domains D$ used in Paragraph 5.2 contained around 40000 sites and the
domain D$ with r=1 was therefore 200_200. If we compare these sizes
with disks, as we are interested only in orders of magnitude, the boundary
of D$ would correspond to a circle of radius one fifth that of D. The dis-
tribution mD, �D$ , on the boundary of D$ is approximately equivalent to
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that of a circle at a distance of 100 mesh units from the boundary of the
cylinder 397_793. Figure 16 (Paragraph 3.2) shows that the first four
Fourier coefficients are still far from their bulk distribution. These coef-
ficients are precisely those measuring the large clusters responsible for
creating crossings or for breaking them.

But as we have seen (Paragraph 3.2), the middle of a long cylinder
provides a better approximation to bulk behavior. So we confine our
experiments to cylinders. If a square D$ of size 200_200 is located in the
middle of a cylinder of size about 397_793 as before, its distance from the
boundary is about 300 mesh units and its spins behave essentially as in the
bulk as can between in Fig. 16. This choice has one possible drawback. It
spoils the symmetry between horizontal and vertical directions. The mean
width of the largest cluster is surely not equal to its mean height on a long
cylinder. Fortunately a simple quantity, ?h(r)&?v(1�r), can be used to
quantify this symmetry breaking.

To enforce the relation ?h(r)+?v(r)=1, we took the measurements on
triangular lattices with 426_737 and 852_1475 sites, the 737 and 1475
sites being in the longitudinal direction. On these lattices, the crossings
?h , ?v and ?hv were measured on rectangles with the 81 aspect ratios r used
before. To keep the rectangles safely in the bulk, we used domains D$ with
approximately 10000 sites. (We used the same domains on both cylinders.
See below.) The longest rectangle (rr7.3) has 40_253 sites and its dis-
tance from the boundary, for the cylinder of size 426_737, is similar to
that of the square of size 200_200 square in a cylinder of size 397_793
discussed above. The highest rectangle (rr0.13) has 293_34 sites and its
height takes up more than 2

3 of the circumference of the smaller lattice,
possibly too large a fraction if the symmetry breaking is important. The
larger lattice helps to address this question. We also measure the crossings
?h , ?v and ?hv inside a disk of radius 100.2 whose center is within one mesh
unit from the central meridian of the cylinders. Note that the hypothesis of
conformal invariance stated above does not relate the crossings in the bulk
on the rectangles and on the disk. As emphasized, the map , must act on
both D and D$ and there is no nonformal map from the plane (D) to the
plane taking a rectangle (D$) to a disk.

Figures 35 and 36 present the results. Squares (g) were used for the
crossings on rectangles and circles (m) for those on the disk. White sym-
bols are for the 426_737 lattice and black for the 852_1475. The two
samples were 895000 for the 426_737 cylinder and 227000 for the
852_1475. Even though these data look almost identical to those pre-
sented in Paragraph 5.2 (Figs. 31 and 32), the vertical scale is different.
When D=D$, ?h ranges from 0.02 to 0.98 as r decreases from 7.3 to 0.14.
Here, in the bulk, ?h goes from 0.23 to 0.76 for the same interval of r.
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Fig. 35. log ?h�(1&?h) and log ?v �(1&?v) as a function of log r.

There is a definite breaking of the horizontal-vertical symmetry. The
graph of ?hv for the cylinder with 426_737 sites is clearly asymmetrical.
For the rectangles the quantities ?h(r) and ?v(1�r) that should be equal
if the symmetry was present differ by about 60 for r large or small and
by 10 for rr1. For the measurements on the disk their departure from

Fig. 36. log ?hv as a function of log r.
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symmetry varies from 3 to 70. For both cases, rectangles and disk, the
vertical crossings are always larger than the corresponding horizontal ones.
Large clusters wrapping around the circumference are more likely than
clusters having about the same number of sites but that fail to surround the
cylinder simply because the former have fewer peripheral sites than the latter.
This difference seems to play a role here. If this is so, a better measurement
of the ?'s would therefore be obtained by, say, doubling the linear dimensions
of the cylinder while keeping the number of sites in the domains D$
unchanged. This is why we studied the larger 852_1475 cylinder. For this
new experiment, the asymmetry is essentially gone. For example most of the
quantities ?̂h(r) and ?̂v(1�r) differ now by less than 0.50. Still the data for the
two lattices remain very close and experiments with smaller cylinders show
that the curves in Figs. 35 and 36 do not change much with lattice size, so that
we can assert with some confidence that the crossing probabilities in the bulk
are well defined as the mesh goes to zero, in other words, the crossing
probabilities are defined even when D is the whole plane. The data, especially
those for the 852_1475 cylinder, must represent a very good approximation
to the crossing probabilities in the bulk for the rectangles and the disk.

In particular, the curves for the crossings on the rectangles and on the
disk are now distinct and their difference does not seem to be due to the
limitation of the experiments. There was in fact no reason at all to compare
them or to use the parameter r to describe the arcs on the disk, for it
pertains to a conformal transformation ,r from the disk to the rectangle
of aspect ratio r that is no longer pertinent. Nevertheless, it does appear
that ?rectangle

v (r)<?disk
v (r) for r>1 and that ?rectangle

v (r)>?disk
v (r) for r<1,

inequalities for which we have no very persuasive explanation. For each r,
the map ,r extends to a conformal equivalence ,r of a double covering
R1(r) of the plane, or rather of the Riemann sphere, ramified at four points
with a torus R2(r). Figure 37 represents R1 and R2 and their corresponding
neighborhoods. Only one sheet of R1 is depicted here; the other is identical,
all data being primed (2 � 2$, etc.). R1 is a double covering of C with cuts
tying the four singular points on the unit circle |, |� , &| and &|� . The

Fig. 37. The Riemann surfaces R1 and R2 and their corresponding neighborhoods. Only one
sheet of R1 is presented.
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cuts were drawn along the unit circle. Consequently the neighborhood to
the left of the domain 2 on the first sheet is the domain 6' on the second.
The thicker lines on R2 are not cuts but circumscribe the images of the
disks on R1 . The top and bottom sides of the whole rectangle are identified
as are the left and the right. Both R1 and R2 are tori. The nonformal class
of R1 and R2 depends on r. The hypothesis of nonformal invariance does
apply to ?disk/R1(r)

v and ?rectangle/R2(r)
v . They are expected to be equal. We

do not know what relations might subsist between ?rectangle
v (r) and

?rectangle/R2(r)
v or between ?disk/R1(r)

v and ?disk
v (r).

6. COMPARISON WITH FREE FIELDS

If we take '=,� R the interaction for the free field on a square lattice
is

g
8?

: ('( p)&'(q))2, g=2R2

the sum running over all pairs of nearest neighbors. In the continuum limit
this becomes formally

g
4? | {\�'

�x+
2

+\�'
�y+

2

= dx dy (41)

We observe that there is an inconsistency in [L] between the discrete and
continuous hamiltonians. For consistency the denominator in (4.3) of that
paper has to be replaced by 4?. We have used the formulas based on the
continuous hamiltonian.

There are at least two properties of free fields that appear again in
other models. Either might be chosen as a basis of comparison and a
means of studying these models. The property commonly chosen is the
asymptotic behavior of correlation functions. In particular, in the plane,

( ('( p)&'(0))2)t
2
g

ln | p| (42)

where | p| is the distance between x and 0; and on a cylinder of circum-
ference 2?

( ('( p)&'(0))2)ta+
1
g

| p| (43)
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if p and the origin 0 lie on the same generator and | p| is the distance
between p and the origin with respect to the metric that yields a circum-
ference of 2?. We shall briefly recall below the pertinent calculations. In the
formula a is a constant that depends on the mesh. It could approach
infinity as the mesh approaches zero.

Another property is described in [L]. Consider the partition function
Z(,) with boundary conditions, either on a disk so that , is a function on
the circle, defined however only modulo constants, thus for simplicity with
constant term 0, or on a cylinder, taken to be infinitely long, so that , is
really a pair of functions ,1 , ,2 , and a constant x, taken modulo 2?. In the
notation of Paragraph 2.1

,1= :
k{0

aB
k eik%, ,2= :

k{0

bB
k eik%

For the disk,

Z(,)=exp \&g :
k>0

|Ck | 2�2+ (44)

and for the cylinder,

Z(,1 , ,2 , x)=Z(,1) Z(,2) (45)

Thus, as far as the variable x is concerned, the measure is homogeneous,
a behavior that contrasts with that of the Ising model discussed in the
previous section.

For the Ising model on a triangular lattice the SOS-model constructed
in Section 2 is almost the same as the SOS-model attached, as in [N] for
example, to the O(1)-model on a hexagonal lattice6 and for this model
there are familiar arguments that suggest the behavior (42) with g= gI=4�3.
We have not tested carefully the universality of the behavior or of the con-
stants. Crude experiments for the square and the triangular lattice suggest
that the behavior is universal but we are not certain that the constants do
not vary slightly.
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6 In [N] the partition function for the O(1)-model is expressed as a sum over weighted closed
curves in the hexagonal lattice which is dual to the triangular lattice. Every state of the Ising
model leads also to a collection of closed curves, formed from the dual edges separating sites
of different spin. The weight of the collection as a whole can be taken as the mass of the set
of Ising states that lead to it. Our prescription leads, however, for the individual curves in
the collection to different Boltzmann weights than the usual complex weights determined
locally as in [N]. For the reasons explained in the following section this does not affect the
relation (46).
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The function ' of the free-field theory plays the same role as the func-
tion h of our construction so that to test (42) we examine ( (h( p)&h(0))2).
For what they are worth, the results for the plane appear in Figs. 38 and
39 in which the value of

( (h( p)&h(0))2) &1.5 ln | p| (46)

is plotted against | p|. For the square lattice in Fig. 38 the experiments are
performed in disks of radii 100 and 300, an edge of the lattice being taken
in each case as unit. The experiments are perhaps not to be taken too
seriously because the finite size leads to an ambiguity. Not only are the
status in a disk qualitatively different at the boundary from those in the
true bulk limit but also the jump lines that in a disk terminate at the
boundary could, in some sense, in the bulk turn and pass once again
through the disk, so that working in the disk increases the statistical inde-
pendence. The graphs, in which vertical distances are drawn at a much
larger scale, suggest that the function is approximately constant except

Fig. 38. The quantity ( (h( p)&h(0))2) &1.5 ln | p| measured on disks of radii 100 and 300
covered by a square lattice.
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Fig. 39. The quantity ( (h( p)&h(0))2) &1.5 ln | p| measured on a disk of radius 90 covered
by a triangular lattice.

close to the origin and near the edge of the disk, where the effect of the
boundary manifests itself. The constant to which one might imagine the
difference (46) tending has not yet stabilized in the diagrams. There is a
difference of about 0.4 in the minimum of the two curves. For comparison,
a similar curve for the triangular lattice, obtained once again in a small
disk of radius 90, an edge of the lattice again being taken as unit, is shown
in Fig. 39.

For the cylinder and the same two lattices, square and triangular, the
graphs of ( (h( p)&h(0))2) appear in Figs. 40 and 41. We have not used
the parameter | p| in the figures but rather the parameter k because it is
then easier to explain which part of the curve we used to calculate the slope
(for the square lattice | p|=4?k�LV, for the triangular | p|=8?k�- 3 LV ).
None the less the data have been so normalized that if the behavior is, as
in Eq. (43), asymptotically a+b | p| then the slope of the curves in the
figures on their middle, linear parts and as functions of k is also b. For the
square lattice the cylinder is of circumference 120 and length 2401 in lattice

Fig. 40. The correlation function ( (h( p)&h(0))2) on a cylinder for the square lattice
120_2401.
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Fig. 41. The correlation function ( (h( p)&h(0))2) on a cylinder for the triangular lattice
160_1601.

units; for the triangular of circumference 160 and length 1601. The slope for
the square lattice is about 0.460; for the triangular it is about.452, which is
not a number that we can deduce easily from 4�3. These numbers are close;
so universality of the slope is strongly suggested.

To obtain Figs. 40 and 41 we construct h as in Sections 2 and 3 and
use the difference between the values of h at points on generators of the
cylinder symmetrically placed with respect to the central meridian and at
a distance of k sites from it. Thus k is necessarily less than one-half the
length of the cylinder. Since we use all generators there is considerable
statistical dependence. None the less this yields for a cylinder of size
120_2401 a very regular graph and if we use that part of it between 100
and 1100 we obtain a fit 37.6275+0.4597k from which the statistically
generated values differ by no more than two units at any point on this
interval, so that the slope should be correct to about two parts in a
thousand. (The curve is in fact slightly concave and the departure from
linearity regular. With a quadratic fit and a slightly shorter interval we
would do much better with the fit but not with the slope.) The experiment
repeated on the interval [200, 1000] leads to a slope of 0.4599 but the
same conclusions. A similar experiment for a cylinder of size 120_1201
yields to a slightly better fit and similar conclusions with a slope of 0.4593.
An anisotropic lattice of size 78_2401 is roughly conformably equivalent
to a square lattice of size 120_2401. Using the points on the interval
[200, 1200] we obtain a fit of 39.8942+0.4519k from which the statisti-
cally generated values differ by no more than 1.5, units. The difference is
again not random but not convex. We can again conclude that the slope
is correct to about two parts in a thousand. The difference between the
slopes in the symmetric and the anisotropic cases is 0.0078. In other words,
it appears that we obtain the same constant. A triangular lattice of length
1601 and circumference 160 is conformably equivalent to a square lattice of
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circumference 120 and length a little shorter than 1401. Thus it is long
enough. On using that part of Fig. 41 in the interval [100, 700] we obtain
a fit 20.6918+0.4515k that is as good as those for the square and
anisotropic lattice and suggests, for the same reasons, an error of two parts
in a thousand.

We observe finally that the experiments described in Section 2, in
which the analogue of Z(,) is studied, yield the behavior (44) and (45)
with gB=2R2

B=1.4710{ gI .
For the convenience of the reader, we recall briefly the calculations

that lead to (42) and (43). The average ( ('( p)&'(0))2) is taken with
respect to the measure defined by the weights

exp \&
g

8?
:
p, $

('( p+$)&'( p))2+
=exp(&(Q', ')), $ # [(\1, 0), (0, \1)] (47)

The operator Q is obtained from the relation

:
p, $

('( p+$)&'( p))2=:
p \8'( p)&2 :

$

'( p+$)+ '( p)

We are calculating the second derivative of

&| (exp(i:*(')) exp(&(Q', ')) d'<| exp(&(Q', ')) d'

=&exp(&:2(Q&1*, *)�4)

with respect to the parameter :, where * is the linear form ' � '( p)&'(0)
or the function $p&$0 . The second derivative is

(Q&1*, *)�2

This expression is easier to treat when we pass to Fourier transforms.
The two delta functions of * can be written as integrals of eigenfunctions
of Q. Since the operator Q acts on ' so that (Q')( p) is g�8? times

8'( p)&2'( p+(1, 0))&2'( p&(1, 0))&2'( p+(0, 1))&2'( p&(0, 1))

its eigenfunction e2?i( p1x+ p2 y) corresponds to the eigenvalue g(sin2 ?x+
sin2 ?y)�?. Therefore 1

2 (Q&1*, *) becomes at p=( p1 , p2)

?
2g |

1�2

&1�2
|

1�2

&1�2

|e2?i( p1x+ p2 y)&1| 2

sin2 ?x+sin2 ?y
dx dy
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or

2?
g |

1�2

&1�2
|

1�2

&1�2

sin2(?( p1x+ p2y))
sin2 ?x+sin2 ?y

dx dy (48)

The integral outside a circle of small positive radius = about 0 remains
bounded as | p| � � and inside this circle the denominator can be replaced
by ?2(x2+ y2). The result is

2
g? |

=

0

dr
r |

2?

0
sin2(ru cos %) d%, u=| p| (49)

The integral of (49) is the sum of

|
1�u

0

dr
r |

2?

0
sin2(ru cos %) d%=O \u2 |

1�u

0
r dr+=O(1)

and

|
=

1�u

dr
r |

2?

0
sin2(ru cos %) d% (50)

Since sin2 .= 1
2& 1

2 cos 2.,

|
2?

0
cos(z cos %) d%=2?J0(z)

and J0(z)=O( |z| &1�2), (49) can be replaced by

? |
=

1�u

dr
r

r? ln u

Multiplying by 2�g? we obtain (42).
For a cylinder we treat a lattice that is periodic in the vertical direc-

tion (the p1 direction) with period A, which for simplicity we take to be
even. If p=(0, An), n>0, the analogue of (48) is

2?
g

:
A�2&1

x=&A�2

1
A |

1�2

1�2

sin2(?Any)
sin2(?x�A)+sin2(?y)

dy
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Once again we drop terms that remain bounded as A approaches infinity.
This yields

2
g? \

1
A |

1�2

1�2

sin2(?Any)
y2 dy+

2
A

:
A�2&1

x=1
|

1�2

&1�2

sin2(?Any)
x2�A2+ y2 dy+ (51)

We examine the second term of (51) using the identity

sin2(?Any)= 1
2& 1

2 cos(2?Any).

The expression obtained from the term 1�2 on the right is independent of
n and on close examination is seen to behave like in A, but that is not
pertinent here. Since

1
A

:
A�2&1

x=1
|

1�2

1�2

cos2(2?Any)
x2�A2+ y2 dy=:

x
|

A�2

A�2

cos(2?ny)
x2+ y2 dy

which upon integration by parts becomes

1
2?n

:
x

sin(2?ny)
x2+ y2 }

A�2

y=&A�2

+
1

2?n
:
x

|
A�2

A�2

2y sin(2?ny)
(x2+ y2)2 dy

the second term behaves��independently of A��as O(1�n). This leaves the
first term of (51) which is n times

2
g? \

1
An |

1�2

&1�2

sin2(?Any)
y2 dy+

For large An this expression is approximately 2?�g. If, however, we
measure the distance between p and 0 not in terms of the circumference but
in terms of the radius of the cylinder, the constant 2?�g is replaced by 1�g
as in (43).

Although we have inferred the relation (46) from the corresponding
relation for the SOS-model associated to the O(1)-model by the construc-
tion of [N], our construction of the measure on the set of functions h is
much more naive and involves no complex weights. As a consequence the
measure is no longer gaussian. The relation (42), with g=4�3, applied to
h suggests that, if it were, the appropriate gaussian would be

g
4? {\

df
dx+

2

+\df
dy+

2

=
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thus that of (41). The usual formulas for the expectation of the exponential
ei*(h) of the linear function *(h)=h( p)&h(0) then suggest, after renor-
malization, that the correlation function of the spins, thus the expectation
of eih( p)&ih(0), is

e&3�4 ln( p)
t1�p3�4

The exponent is of course not correct. The explanation is presumably
similar to that of Section 2. It may be possible, although we have made no
attempt to do so, to use the functions h to construct in the limit a measure
on distributions in the plane and this measure may very well share some
basic properties with the usual gaussian measure, but it will not be
gaussian.

It should perhaps be observed that the random variable ,( p)&,(0) is
not well defined on distributions, so that the expectation of ei,( p)&i,(0)

makes no sense. Strictly speaking, one should take a smooth function
*_=*_

p, 0 approximating as _ � 0 the difference $p&$0 of two $-functions,
calculate the expectation of e_( p) of ei,(*_)=ei*_(,), normalize by dividing
by the value e_( p0) at a fixed p0 , usually taken at a distance 1 from the
origin, and then pass to the limit _ � 0. This method was used in
Paragraph 2.3.

7. ALTERNATE CONSTRUCTIONS

In this section, we examine briefly other conventions and construc-
tions that we could have chosen in our experiments.

7.1. SOS-Model Jumps

If, as indicated in the introduction, the aim is simply to develop the
circle onto the line, thereby turning the Ising model into an SOS-model,
the particular construction chosen is somewhat arbitrary. We could,
apparently with equally good reason, replace the jumps of \? by jumps
from a set, [&(2k+1) ?, &(2k&1) ?,..., (2k+1) ?], k # N, each choice
being assigned a probability on which the only conditions are that the sum
of the probabilities is one and that the probabilities of jumps by equal
amounts in opposite directions are equal. It is not, at first, clear what effect
this has.

Thomas Spencer pointed out to one of us that the behavior, for jumps
of \?,

( (h( p)&h(0))2) t3�2 ln | p|
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is a consequence of a more geometric hypothesis.7 To construct the func-
tion h attached to a particular state of the Ising model, we construct curves
separating the regions in which the spins take different values. Let, in the
plane, N=N( p) be the number of curves separating p from the origin. The
hypothesis is that

(N( p))tcN ln | p| (52)

Since h( p) is then obtained by assigning independent values to the jumps
of \?, it is clear that cN must be 2�g?2. For a cylinder the analogue of (52)
is

(N( p)) tc | p| (53)

Once again, out of curiosity, we tested this hypothesis numerically for the
square lattice. The results are presented in Fig. 42 in which (N( p))�ln | p|
is plotted for the square lattice and two disks of radii 200 and 300. It
appears that except at the center and near the boundary the quotient is
approximately constant but that it is only very approximately equal to
3�2?2

t0.15199. There are several possible causes��in addition to a depar-
ture from gaussian behavior. As we saw in Paragraph 3.2 the bulk state is
approached only slowly in a disk. Moreover the finite-size effects that
appear in the examination of (46) appear here too. The first consequence
is that there will be a tendency to overestimate the number N( p) when | p|
is not small in comparison with the radius because the curves in a disk that
reach the boundary are not allowed to close. In principle, this effect should,
for a given | p|, be mitigated as the radius grows. On the other hand, rather
than increasing toward 0.15 as we pass from a radius of 200 to one of 300,
the minimum of the curve, decreases from about 0.14 to about 0.13. Since
the smallest pertinent value of | p| is about 75 and ln(75)t4.3 and the
difference in (46) does not, as we saw in the previous chapter, approach a
limiting value rapidly, if it approaches one at all, a decrease in the mini-
mum of 0.4�4.3?2

t0.01 is not completely unreasonable. No conclusions
are possible without further study. Our purpose here is not, however, to
examine (52) but rather to acquire a rough understanding of what we
might have discovered if we had chosen the jumps in a different way.

The advantage of (52) and (53) is that they make clear that the
behavior (42) and (43) does not change when the definition of h is
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matters is that they be independent from curve to curve.
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Fig. 42. The quantity (N( p))�ln | p| for the square lattice on disks of radii 200 and 300.

modified. If there are jumps of (2k+1) ? with probability |k , k # Z, then
(42) persists with a new constant

cN :
�

k=&�

|k(2k+1)2 (54)

There is a similar change in (43).
The behavior of the functions Z(.) appears to be quite different. We

have performed a few rough experiments, replacing the jumps of \? by
jumps of &3?, &?, ?, 3?, each with probability 1�4 and by jumps of &5?,
&3?, &?, ?, 3?, 5?, each with probability 1�6. If the measures continue to
exist, but with gB modified as suggested by (54) then the Fourier coef-
ficients would continue to be distributed as gaussians but with g= gB of
(44) multiplied by 1

5 and by 3
35 respectively, so that the ideal value of

- 2R2
B�?t0.68 of the distribution at 0 would be multiplied by - 1�5 or

- 3�35 yielding t0.31 and t0.20. In the first row of Fig. 43 (four and six
jumps) the distribution of the Fourier coefficients RA1 for a cylinder of size
299_599 is compared in each of these cases with a gaussian with the same
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Fig. 43. The distribution as a function of RA1 (first line) and RA5 (second line) with four
jumps (first column) and six jumps (second column).

value at 0. There is some similarity but considerable difference. Moreover
the value at 0 is close to but different from the suggested value. For the
higher coefficients the distribution looks more and more like a gaussian. In
the second row of Fig. 43 the distributions of RA5 , normalized so that the
factor - k with which we are familiar from Section 2 are compared with
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Fig. 43. (Continued)

gaussians. Not only are they closer to gaussians, but the values at 0 are
closer to those predicted by (54).

On the other hand, the first row of Fig. 44, in which the distributions
of RA1 for the three sizes 99_199, 199_399, and 299_599 are compared
in each of the two cases, suggests that the limiting measures may none the
less exist. So does the second row of Fig. 44 for RA5 . We have, however,
as yet made no serious effort to decide whether this is so, nor whether these
measures could be conformally invariant and universal.

Another possible ``natural'' choice for the relative weights of the jumps
n?, n odd is given by the Dirichlet form. Its discretized form (47) used in
Section 6 suggests that the weights |2k+1 and |1 of having a jumps
\(2k+1) ? or \? satisfy |2k+1=|2k+1

1 . If |1 is fixed by requiring that
�i # Z |2i+1=1, then |1=- 2&1. Then the constant gB would be multi-
plied by the inverse of �i # Z |2i+1(2i+1)2=3, that is 1

3 .
In addition to (52) we also examined, following a suggestion of

Thomas Spencer, the behavior of

( (N( p)&(N( p)) )2)�ln | p|

whose behavior is pertinent when attempting to establish (46) rigorously,
in disks of radii 200 and 300. Although the results are not relevant to this
paper, they are presented, for the curious reader, in Fig. 45. Once again,
the curves are extremely flat, but there is a drop for the larger radius that
has to be explained.

7.2. The Fortuin�Kasteleyn Construction

The Fortuin�Kasteleyn formulation of the Ising model can be used to
map the partition function of the high-temperature phase of the model to
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Fig. 44. The distribution as a function of RA1 (first line) and RA5 (second line) with four
jumps (first column) and six jumps (second column) on the cylinders 99_199, 199_399, and
299_599.
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Fig. 44. (Continued)

a percolation-like sum over bond configurations. To construct the F�K
version of an Ising model on a planar graph G with vertices s # S and
bonds b # B we shall form the first barycentric subdivision G$ of G. Thus
associated to G are the vertices s, the bonds b, each joining two sites, and
the faces f, each face f being bounded by sites and vertices. The sites S$ of

Fig. 45. The quantity ( (N( p)&(N( p)) )2)�ln | p| on disks of radii 200 and 300.
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G$ are the sites in S and points obtained by choosing arbitrarily from each
bond b and each face f a point in its interior. Thus, set-theoretically,
S$=S _ B _ F. The bonds B$ are pairs consisting of a bond in B and one
of its ends or a face in F and a bond or vertex on its boundary. In fact, the
bonds in B$ joining a face to a vertex in its boundary are for our purposes
superfluous and are not included in our constructions.

The partition function of the original model is taken in the form

Z=:
_

`
B

exp(J$_(s), _(t)) (55)

Here s and t are the two sites joined by b. Thus, for a square lattice,
sinh(J )=1, J=0.881374. For a given configuration _, the clusters, in the
sense of this paper, are maximal connected subsets of S on which _ is of
constant sign. To obtain a Fortuin�Kasteleyn cluster we remove the bonds
of these connected clusters one by one with probability 1�&, &=exp J (for
a square lattice 1�&=0.414214). This replaces the sum (55) by a sum over
decompositions of G into subgraphs, each component being provided with
a sign. A decomposition is the subgraph obtained by keeping all vertices
and removing some bonds.

Z=:
_

`
B

(1+(exp(J$_(s), _(t))&1))

=: ` (exp J&1)

=: ` (&&1)

=: (1+(&&1))r [(&&1)q�(1+(&&1))r]

=: &r \1&
1
&+

q

\1
&+

r&q

(56)

The sum in the second line runs over all decompositions into subgraphs,
each component being signed, so that a constant spin is assigned to each
of its vertices, and so do the sums in the remaining lines. From a signed
decomposition we can of course reconstruct, from the signs alone, the
original state of the Ising model. This state has r bonds that join sites with
the same spin, so that its probability is &r. The number of bonds in the sub-
graph is q and the factor (1&1�&)q (1�&)r&q is the probability that we
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arrive at it on removing bonds. If we now ignore the spins, the final sum
in (56) becomes

: (&&1)q 2c

if c is the number of connected graphs in the decomposition.
To construct the function h we associate to a decomposition a state _$

on S$. The value of _$ is 1 at the vertices of G, at the bonds of G that
belong to the subgraph, but is &1 at all other vertices of G$. Now h can
be constructed as before, except that the jumps are to be \?�2 and not
\?. It turns out to be instructive, at least for the crossing probabilities, to
replace the probability 1�& by a variable probability 1&+ between 0 and 1.
Thus +FK=0.585786.

We have considered only graphs formed by square lattices on either a
cylinder (for distributions and correlations) or a rectangle (for crossing
probabilities). Our aim was not to establish nonformal invariance and
universality for the F�K construction, but rather to acquire a provisional
understanding of the way the various objects introduced in this paper
behave under an alternative description of the model.

There are two ways to define crossings in the F�K construction. If
cluster signs are taken into account, a crossing is a cluster of sites with
positive spins that joins one side of the rectangle to the opposite one. The
crossing probabilities considered earlier are recovered if +=1 but the cross-
ing probabilities are zero if +=0.

If clusters are unsigned, crossings are defined as in bond percolation.
This is more in the spirit of the F�K formalism and we shall use this defini-
tion. Note that both conventions are linked: if ?+ and ?& are the crossing
probabilities over a positively or negatively signed cluster, and ?+& the
probability that there are spanning clusters of both positive and negative
sign, then the probability ? that an unsigned cluster crosses is given by the
following obvious relation,

?=?++?&&?+&

Our crossing probabilities now depend on two variables: the aspect
ratio of the rectangle r and the probability + of not removing a link. We
studied each of these variables separately, varying one and keeping the
other fixed. We first took 1&+=1&+FK#1�& and studied the dependence
on the aspect ratio. Results for ?h(r, +FK ), the probability of a horizontal
crossings in G$ on either + or & clusters, are shown in Fig. 46. The num-
bers of sites in G inside the rectangles were around 40000 and the samples
250000. The absence of symmetry implies that duality fails,

?h(r, +FK )+?h(1�r, +FK ){1
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Fig. 46. log ?h(+FK )�(1&?h(+FK )) as a function of log r.

The asymptotic behaviour of log ?h(r, +FK ), shown on Fig. 47, is found to
be

log ?h(r, +FK ) ww�r � � &0.502?r+constant

a number reasonably close to ?�2, despite the rather low statistics.
In the second experiment we measured the dependence on + of

?h(1, +). The results presented in Fig. 48 raise the question whether +=+FK

might be a critical value of the function ?h(r, +FK ) or at least of ?h(1, +FK ),
that is ?h(1, +) would be zero for 0<+<+FK and nonzero for +>+FK . It
is not obvious from the numbers obtained what the limit of the function
?h(1, +FK ), +>+FK , is when the mesh goes to zero.

We examined the correlation functions

( (h( p)&h(q))2) +

Fig. 47. Fits of the asymptotic behavior of log ?h(r, +FK ) as a function of r.
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Fig. 48. ?h(1, +) as a function of + for 100_100 and 200_200 square lattices G. (The curve
of the larger lattice is the top one for large +.)

both on a cylinder and on the plane. According to [N] one should expect
(provided that an analogue of (52) is valid) that for correlations in the
plane

( (h( p)&h(0))2) +FK
t

2
3 ln | p|

This is confirmed by the graphs of Fig. 49. In the first the radius of the disk
considered is relatively small, about 60 bond units; for the second it is 180
bond units. The presence of three distinct curves, corresponding to the
cases that p is a new site on an old site, an old bond, or an old face, while
0 is taken to be a new site on an old, is curious. It appears that they remain
distinct in the limit of an infinite radius, but their separation remains
bounded. Once again the scale in the vertical direction is very large; the
curves of these diagrams are, in fact, extremely flat except near the ends.

On the cylinder, the correlation functions behave as

( (h( p)&h(q))2) +ta(+)+b(+) | p&q|

at least if p and q lie on a common generator. As observed in Section 6, the
quantity a(+) is a constant that depends on the mesh and on the nature of
the pair [ p, q], on whether p or q is a site, bond or face of the graph G.
If the conventions of the equation (43) are used, the value of b(+FK ),
estimated on a cylinder of size 99_699, is close to 0.26.

We studied the distribution of the function h for two sizes of cylinder,
149_339 and 299_679, but only on the boundaries, not on inner circles.
These cylinders are a little short, so that about 8�1000 of the samples are
such that the sum of the jumps on a circumference are not 0, but passing
to longer cylinders of size 149_449 and 299_899, although it reduces this
fraction to 2�1000 does not change the conclusions. The measures on the
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Fig. 49. The correlation ( (h ( p)&h(0))) 2
+FK

& 2
3 ln | p| on disks of radii 60 and 180.

boundary appear to be gaussian once again, but with a new value of gB

that is a little greater than 3 (Given the behavior of |k of Fig. 50 it is not
so clear what gB is to be. Further study might suggest defining it by the
asymptotic behavior of |k .) We plot the values of |̂k for 1�k�30 on
Fig. 50. The results, coarse as they are, are similar to those described in

Fig. 50. The numbers |̂k for 1�k�30 for the cylinders 149_339 and 299_679.
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Section 2, although there are curious features that advise against hasty con-
clusions. The collection of values for the two cylinders cross at k=7.
Graphs of the distributions of RA1 and RA5 appear in Fig. 51. On the left
the results for the cylinders of different sizes are compared with each other;
on the right the results for the largest of the two cylinders are compared

Fig. 51. The distribution constructed according to the F�K-definition as a function of RA1

or RA5 .
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Fig. 51. (Continued)

with gaussians. Figures 50 and 51 together suggest that the behavior of
the function h constructed according to the F�K-definition might have
similarities with that of the function constructed by the methods of this
paper, but we have not examined the matter carefully. In particular, we
tested neither conformal invariance nor universality.

7.3. Infinite Temperature

For the Ising model at infinite temperature, thus for site percolation in
which each site is open with probability 0.5, the crossing probabilities cease
to be of interest. They are all 0 or, in exceptional and trivial cases, 1. On
the other hand, the partition functions Z�(�1 , �2 , x, q) seem to behave
much like those at the critical temperature. In Fig. 52 we present results for
the square lattice on cylinders of size 99_399 and size 299_1199. On the
top, the results for RA1 and RA10 for these cylinders are compared with
each other. On the bottom the results for the largest of the two cylinders
are compared with a gaussian. As in Fig. 1, there has been no renormal-
ization of these distributions, so that if the distributions were similar to
those of Section 2 the ratio of the heights of the two curves would be
1�- 1 0r0.32. It is about 0.34, but the cylinders are still fairly small.
Although this has no perceptible consequences, these cylinders are short
enough that about 15�10000 of the sample states yield jumps whose sum
along a circumference is not 0, so that the states at the two ends are cer-
tainly not independent. In Fig. 53 the results for the smallest cylinder are
compared with those for a cylinder on a triangular lattice of size 116_401.
This is a very stubby cylinder, but, curiously enough, once again only
about 15�100000 of the states are such that the sum of the jumps along a
circumference is not 0. Fig. 54 is analogous to Fig. 2: the two sequences of
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points on the left are for the square lattice, the upper for the smaller of the
two cylinders, the lower for the larger; the two sequences of points on the
right are for the smaller of the cylinders with a square lattice (lower set)
and for the cylinder with the triangular lattice (upper set). If Fig. 54 is to
be believed the constant 2RB changes and becomes approximately one-half

Fig. 52. The distributions RA1 and RA10 at infinite temperature.
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Fig. 52. (Continued)

Fig. 53. The distributions RA1 and RA10 at infinite temperature compared for square and
triangular lattices.
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Fig. 54. The numbers |̂k at infinite temperature.

its previous value, but, as with the other examples of this section, our aim
was more qualitative than quantitative.
We can also introduce, as in Section 4, the partition functions Z�

++

and Z�
+& or the measures Z

�(�, x). A little reflection shows that the two
numbers do not depend on q and are now both equal to 12 . The analogue

Z�
++ $0+Z�

+& $?=m�
q ([bk=0], x)

of an equation deduced from Eqs. (29) and (30) is not valid, rather the
simulations suggest that, if Z�(0, x, q) exists, then it peaks at ?�2 and 3?�2.
On the other hand, Z�(0, 0, x, q) has quite a different behavior and a rela-
tion between Z�

q=0([ak], [bk], x) and Z�
q=0([ak], x) like that of Eq. (34)

is difficult to ascertain because the functions h do not very often have level
lines threat encircle the cylinder, even when the cylinder is very long.
More pertinent to the study of the measures at criticality is that the

behavior of

| Z�(�1 , �2 , x) d�2<| Z�(�1 , �2 , x) d�2 dx=: +�
k (�) exp(ikx)
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Fig. 55. An unsatisfactory but curious approximation.

is similar to that of Z0(�, x). This may be of some advantage for numerical
studies since at infinite temperature no thermalizations are necessary.
Consider for example the analogue f � of the function defined by Eq. (37).
There is, once again, a simple, rough, but inexact��as is clear from Fig. 55
��approximation to this function,

f �(x)ta
sin(b?x)

b?x

but, as before, we were unable to improve upon it in a useful fashion.

8. AFTERWORD

Most of the phenomena we have examined in the paper are manifesta-
tions of the influence of the boundary, so that to some extent the thrust of
the paper runs counter to the notion that statistical mechanics, especially
as it refers to critical phenomena, is the study of bulk properties. Since
critical behavior appears when the appropriate equilibrium between the
strength of the interactions and the number of paths by which the interac-
tion is transmitted over long distances is achieved it is not, from a mathe-
matical standpoint, such a bad idea to study criticality by examining the
consequences of systematically blocking large numbers of these paths. On
the other hand, renormalization is usually conceived in bulk terms. So it is
a relief that the distributions investigated here, whose ultimate purpose is
the introduction of a concrete notion of fixed point, do not become trivial
when the boundary moves off to infinity.

For the Ising model, however, in contrast to percolation or to the free
boson, there are formal difficulties in the introduction of a closed renor-
malization transformation that we are still unable to overcome, even with
measures that continue to have a meaning in the bulk.
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One connection that we would like to make, and that is suggested by
some of the experimental results of the paper, is with the notion of confor-
mally invariant field theory in the strongly geometric form envisaged by
Graeme Segal ([S1, S2]). It may be that the basic objects of that theory
are constructible from the measures examined in this paper. Recall that in
that theory one of the first objects to construct is a Hilbert space

H=:
:

H:�H:�

associated to a circle with parametrization. In addition, suppose that we
are given a Riemann surface 7 with boundary C consisting of disjoint
parametrized circles C1 ,..., Cm and C$1 ,..., C$n , the parametrizations being
given by real analytic functions. Then (Eq. (1.4) of [S1]) the theory is
provided with an operator

U7 : Hm � Hn

We might suppose that H is the L2-space of a measure + on the space
of distributions on the parametrized circle. One such measure whose exist-
ence is suggested by the experiments of this paper is the measure + on dis-
tributions on a circle in the plane or on the central circle of an infinite
cylinder described at the end of Paragraph 3.2, thus the measure defined in
the bulk. It is possible that L2(+) is, if not H, then the vacuum sector
H:0

�H:� 0
or some other subspace of H.

Consider the annulus 7q of inner radius q and outer radius 1 and the
operator Uq associated to this surface. Take C2 to be the outer circum-
ference with the natural parametrization, C1 the inner, and C to be their
union. We consider the annulus as imbedded in the plane or, if we treat it
as a cylinder of finite length, as being imbedded in a cylinder extending to
infinity in both directions. The construction of bulk measures suggested in
Section 3 yields experimentally a measure mq=m7q , C on the products of
the spaces of distributions on C1 and C2 . If, as we might suppose, mq is
absolutely continuous with respect to +_+ then it is given by a kernel

dmq(�2 , �1)=Kq(�2 , �1) d+(�2) d+(�1)

It is not impossible that the operator Uq , or rather its restriction to the
sector represented by L2(+), is given by

Uq F(�2)=| Kq(�2 , �1) F(�1) d+(�1)
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An essential feature of these operators would be the relation Uq=
Uq1

Uq2
when q=q1q2 which would follow from a relation

| Kq2
(�2 , �) Kq1

(�1 , �1) d+(�) (57)

Let C be the circle that separates the annulus of parameter q into annuli
of parameters q1 and q2 . We apply the notions of conditional probability
and the markovian property, as well as the obvious symmetry of Kq , to the
bulk measures. Thus

Kq(�2 , �1) d+(�2) d+(�1)=dmq(�2 , �1)

=| dmq(�2 , �1 | �) d+(�)

=| dmq1
(�1 | �2 | �) dmq2

(�2 | �) d+(�)

=| dmq1
(�1 | �) dmq2

(�2 | �) d+(�)

={| Kq1
(�, �1) Kq2

(�2 , �) d+(�)= d+(�1) d+(�2)

from which the equation (57) would follow.
These are tentative suggestions, and we only make them to confess

that we have not yet had an opportunity to test them experimentally. That
may not be an easy matter. Nor do we know whether they are confirmed by
the conventional wisdom. To construct some analogue of Segal's operators
on the whole H it may be necessary to utilise the phase of Section 4, but
here again more reflection is necessary.

Another set of experiments waiting to be performed, although here the
outcome is more certain and the experiments therefore less tempting, is an
examination of the behavior of the measures in a neighborhood of the criti-
cal point as we vary J (or the temperature) and introduce a small magnetic
field. The limits as the mesh goes to 0 are expected to exist no longer, but
the behavior of the measures, of their moments for example, should yield
the usual critical exponents & and 2 and should correspond to the usual
intuition. We are nevertheless curious to see how the geometry of the fixed
point is reflected in the coordinates introduced in this paper and to see, in
particular, which linear combinations become irrelevant.
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We have also not pursued the study of other models, the Potts model,
the n-vector model and so on. The examples of Section 7 indicate a surpris-
ing sensitivity to the definitions that it would be useful to examine further.
For the Ising model we made, more by good luck than good management,
a particularly happy choice which it is not utterly clear how to generalize
to other models.

APPENDIX

The present work contains simulations of both qualitative and quan-
titative nature. We aimed in most of Sections 2 to 6 to provide numerical
results reproducible to the precision of statistical errors. It is therefore
important that we be precise about our conventions. Though many details
are given in the text we complete them here with technical additions. In
Paragraphs 3.4 and 4.3 and in Section 7 the work is mostly qualitative and
the reader who wants to examine these matters further will need to devise
his own experiments.

A1. Distribution mD

According to the principles of the introduction, each possible function
h lying above a given _ is to be assigned the same measure. This principle
has to be incorporated into the programs locally. For example, there are
two possibilities for the configuration of jump lines (or level curves) pass-
ing through the center of the configuration appearing in the first row of
Fig. 56. They are chosen with equal probability. Since the curves are con-
structed one at a time by adjoining edges, when we first adjoin an edge

Fig. 56. Configurations of jump lines on the square and the hexagonal lattices.

235Universality and Conformal Invariance for the Ising Model



File: 822J L44506 . By:XX . Date:30:11:99 . Time:12:03 LOP8M. V8.B. Page 01:01
Codes: 2326 Signs: 1902 . Length: 44 pic 2 pts, 186 mm

passing through the center we then turn to the left or right with equal
probability 1�2. The next time we pass through the center there is no
choice; there is only one unused successor remaining. For a triangular
lattice, there are no ambiguous configurations. For the hexagonal lattice,
all combinations of + and & around vertices of the dual lattice lead to at
most two possible choices of jump lines (and they are then treated as in the
square lattice) except for the configurations in the two last rows of Fig. 56
for which there are five possible local configurations of jump lines. Each
will then have the probability 1

5 . As a consequence, when a curve first
passes through the center of this configuration it continues on a straight
line with probability 1

5 (which then leads necessarily to one of the con-
figurations in the bottom row) or makes a sharp reverse turn to the left or
the right with equal probabilities 2

5 . If the first curve through the center is
straight, the following curves are determined. Otherwise the next curve,
which may very well be a continuation of the first, returning after perhaps
extensive wandering, has two options, each chosen with probability 1

2 .
For the square lattice, two examples of the random determination of

h occur in Fig. 57 where a configuration was drawn together with the jump
lines of h. If the site at the bottom left corner has coordinate (1, 1), then
four clusters meet at (91

2 , 21
2) and at (131

2 , 51
2). In the first occurence, the

two minus-clusters are joined and, in the second, they are separated. By
definition the jump lines occur on edges dual to lattice bonds. Their ver-
tices were rounded in this figure to show clearly the difference between
joining and separating. The jump lines that wrap around the cylinder are
indicated by dashed lines.

Fig. 57. A configuration on a 11_21 cylinder with the jump lines of h.
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The restrictions of h (on both the cylinders and the squares) were
taken along several curves C. For the square lattices the curves were taken
along lines of sites so that the intersection with dual bonds is unambiguous.
The triangular lattices were oriented such that longitudinal lines with sites
had one site per mesh unit. The longitudinal lines with sites of the hexa-
gonal lattices had the pattern site-site-vacant repeated over every three-
mesh cycles. For the triangular and hexagonal lattices the nonformal
images of the curves Ci on the cylinder never contained dual bonds parallel
to them. They were however moved slightly to the closest position where
their intersections with dual bonds were equally spaced. For the curves
C=C0 at the boundary they were chosen as the curve closest from the
boundary satisfying the previous requirement.

We also measured the distributions on a disk of radius r=300.2. The
center of the disk was a site. All the sites inside the disk of radius r, and
only these, were thermalized. Some of the boundary sites had three neigh-
bors, others only two. We then determined an effective radius reff as the
radius of the largest circle that intersects only dual bonds associated to
sites in the disk. It turned out to be reff=299.50. The restriction of h at the
boundary was obtained along the circle of radius reff&= with ==0.001. The
jumps in H are of the form \?$(%&%0) where %0 is the position of the
intersection on the circle of the dual bond with the curve C. The exact posi-
tions of all the intersections with dual bonds were determined and used to
compute Fourier coefficients. The radius of inner circles were determined as
fractions of (reff&=). For example C0 and C1 are at 8 mesh units from one
another on the 397_793 cylinder and the radii of the corresponding curves
on the disk should be (reff&=) and 0.8811(reff&=) since e&2? } 8�397

t0.8811.
Initial thermalization was provided by a few thousand Swendsen�Wang

sweeps starting from a random configuration for the smaller cylinders, by
5000 sweeps for 397_793 and by 10000 or more for 793_1585. After the
initial thermalizations, measurements were taken every third Swendsen�
Wang sweep for all the cylinders, except for the 793_1585 for which we
used a 5-sweep cycle. A quick time-series analysis indicated that these cycle
lengths insured proper statistical independence of consecutive measure-
ments. The pseudo-random number generator was the one proposed by
Tezuka and L'E� cuyer in [TL].

Programs for the square lattice on the cylinders and on the disks were
written independently by at least two of the authors add errors were chased
down until measurements agreed within the statistical errors reported in
the text.

It might not be clear, on reading the main text, why certain data are
given for some of the geometries studied and not for others. It is because
the results for the various runs were kept in two different formats. For the
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first format, the observed values of each random variable RAk or IAk were
grouped into 401 bins of equal size. Thus for each random variable, 401
nonnegative integers were stored. The width of the bins used during the
first months was a little too narrow and some of the values fell outside the
range covered. Later, in the final months, the bin width was adjusted to
avoid this difficulty. When we used the first format, we also kept, most of
the time, the sum, the sum of the squares and the sum of mixed products
of the random variables. These allowed us to calculate accurately the two
first moments of the distribution and the correlation coefficients. The
second format was more thorough. For each configuration of spins _, we
constructed one possible h and recorded its restriction to the various curves C,
not simply to the extremities of the cylinder or its median. When we
realized that the nonformal invariance might hold in the sense of Section 3,
we kept the restriction of h to more curves. These data bases, with only the
boundary as C or with several curves C for each configuration, are sizeable
even when compressed (a few Gigabytes in all). We generated one for the
cylinder 397_793 with eleven curves C. For 59_401 and 157_1067 we
only kept the restriction of h to one extremity. With the second format it
was possible to test various assertions that we could not have anticipated
without the experience gained from the experiments, but the first required
far less memory, so that more sizes were examined.

A2. Crossings

To determine the aspect ratio of the rectangles where the crossings are
measured we have used the width and the height of the smallest rectangle
that contains the sites of the lattice considered. For example, for the rec-
tangles of LV_LH sites of the square lattice, the ratio is LH�LV. We used
here the orientations of the lattices used for the measurement of mD (see
above).

For �h , �v and �hv on rectangles, crossings started on + spins from
one boundary and ended on + spins on the other. For �A

h and �A
v , the

crossings were required to reach the central meridian if it contained sites
or, if it did not, to reach the line of sites just before. The dimensions of the
rectangles for the square lattice were the same as those used for percolation
crossings in [LPPS]. The results for the triangular lattices are given in
Table VII. The dimensions [LV, LH] that were used are

[586, 69], [596, 73], [566, 73], [582, 79], [540, 77], [554, 83],

[566, 89], [616, 103], [508, 89], [474, 87], [504, 97], [526, 107],

[456, 97], [476, 107], [438, 103], [440, 109], [424, 111], [410, 113],

238 Langlands et al.



Table VII

LH LV r r&1 ?h ?v ?hv ?A
h ?A

v

200 200 1.000 1.000 0.4963 0.4964 0.4022 0.6553 0.6554
205 195 1.051 0.951 0.4811 0.5107 0.4005 0.6403 0.6667
210 190 1.105 0.905 0.4671 0.5250 0.3989 0.6286 0.6811
216 186 1.161 0.861 0.4527 0.5396 0.3956 0.6153 0.6937
221 181 1.221 0.819 0.4389 0.5553 0.3910 0.6023 0.7058
227 176 1.290 0.775 0.4220 0.5711 0.3839 0.5870 0.7212
232 172 1.349 0.741 0.4083 0.5837 0.3764 0.5766 0.7324
238 168 1.417 0.706 0.3922 0.5963 0.3665 0.5627 0.7428
264 164 1.488 0.672 0.3791 0.6133 0.3582 0.5521 0.7582
250 160 1.562 0.640 0.3649 0.6288 0.3484 0.5398 0.7714
257 156 1.647 0.607 0.3482 0.6449 0.3359 0.5242 0.7854
263 152 1.730 0.578 0.3324 0.6592 0.3228 0.5111 0.7972
270 148 1.824 0.548 0.3169 0.6753 0.3097 0.4982 0.8102
277 145 1.910 0.524 0.3028 0.6888 0.2974 0.4847 0.8195
284 141 2.014 0.497 0.2875 0.7062 0.2836 0.4727 0.8334
291 137 2.124 0.471 0.2717 0.7208 0.2688 0.4573 0.8447
298 134 2.224 0.450 0.2571 0.7354 0.2550 0.4456 0.8569
306 131 2.336 0.428 0.2424 0.7503 0.2408 0.4324 0.8666
314 128 2.453 0,408 0.2275 0.7651 0.2265 0.4183 0.8786
322 124 2.597 0.385 0.2115 0.7823 0.2108 0.4033 0.8903
330 121 2.727 0.367 0.1971 0.7963 0.1966 0.3893 0.8987
338 118 2.864 0.349 0.1836 0.8101 0.1833 0.3748 0.9094
347 115 3.017 0.331 0.1697 0.8242 0.1695 0.3597 0.9173
355 113 3.142 0.318 0.1581 0.8340 0.1579 0.3475 0.9237
364 110 3.309 0.302 0.1447 0.8486 0.1446 0.3330 0.9338
374 107 3.495 0.286 0.1318 0.8626 0.1318 0.3178 0.9409
383 104 3.683 0.272 0.1192 0.8749 0.1192 0.3013 0.9490
393 102 3.853 0.260 0.1089 0.8858 0.1089 0.2880 0.9553
403 99 4.071 0.246 0.09758 0.8976 0.09757 0.2723 0.9606
413 97 4.258 0.235 0.08836 0.9069 0.08836 0.2589 0.9656
423 94 4.500 0.222 0.07719 0.9178 0.07719 0.2428 0.9714
434 92 4.717 0.212 0.06971 0.9265 0.06971 0.2313 0.9755
445 90 4.944 0.202 0.06150 0.9343 0.06150 0.2160 0.9792
456 88 5.182 0.193 0.05432 0.9425 0.05432 0.2035 0.9825
468 85 5.506 0.182 0.04596 0.9509 0.04596 0.1874 0.9854
480 83 5.783 0.173 0.03933 0.9573 0.03933 0.1735 0.9881
492 81 6.074 0.165 0.03407 0.9631 0.03407 0.1612 0.9902
504 79 6.380 0.157 0.02899 0.9687 0.02899 0.1488 0.9922
517 77 6.714 0.149 0.02450 0.9738 0.02450 0.1355 0.9938
530 75 7.067 0.142 0.02015 0.9778 0.02015 0.1246 0.9951
544 74 7.351 0.136 0.01738 0.9813 0.01738 0.1153 0.9963

239Universality and Conformal Invariance for the Ising Model



240 Langlands et al.

T
a

b
le

V
II

I

r
r&

1
? h

(r
)

? h
(r

&
1
)

? v
(r

)
? v

(r
&

1
)

? h
v(

r)
? h

v(
r&

1
)

?A h
(r

)
?A h

(r
&

1
)

?A v
(r

)
?A v

(r
&

1
)

1.
00

0
1.

00
0

0.
49

97
0.

49
97

0.
49

96
0.

49
96

0.
40

56
0.

40
56

0.
65

86
0.

65
86

0.
65

86
0.

65
86

1.
05

0
0.

95
16

0.
48

68
0.

51
42

0.
51

46
0.

48
52

0.
40

61
0.

40
48

0.
64

56
0.

67
06

0.
67

17
0.

64
45

1.
10

5
0.

90
49

0.
47

07
0.

53
05

0.
52

82
0.

47
10

0.
40

27
0.

40
37

0.
63

16
0.

68
49

0.
68

40
0.

63
30

1.
16

0
0.

86
14

0.
45

74
0.

54
26

0.
54

34
0.

45
44

0.
39

98
0.

39
74

0.
61

90
0.

69
68

0.
69

80
0.

61
91

1.
22

2
0.

81
90

0.
44

11
0.

55
79

0.
55

87
0.

44
06

0.
39

35
0.

39
31

0.
60

60
0.

70
87

0.
71

09
0.

60
59

1.
29

0
0.

77
52

0.
42

58
0.

57
47

0.
57

47
0.

42
46

0.
38

74
0.

38
68

0.
59

19
0.

72
55

0.
72

50
0.

59
15

1.
34

9
0.

74
12

0.
41

20
0.

58
83

0.
58

71
0.

41
19

0.
38

03
0.

37
99

0.
58

00
0.

73
65

0.
73

54
0.

58
14

1.
41

6
0.

70
56

0.
39

79
0.

60
33

0.
60

20
0.

39
69

0.
37

20
0.

37
18

0.
56

78
0.

74
98

0.
74

89
0.

56
71

1.
48

7
0.

67
20

0.
38

27
0.

61
74

0.
61

64
0.

38
18

0.
36

22
0.

36
16

0.
55

45
0.

76
12

0.
76

19
0.

55
47

1.
56

3
0.

64
01

0.
36

79
0.

63
23

0.
63

20
0.

36
85

0.
35

14
0.

35
19

0.
54

31
0.

77
58

0.
77

50
0.

54
27

1.
64

7
0.

60
71

0.
35

16
0.

64
82

0.
64

68
0.

35
11

0.
33

90
0.

33
87

0.
52

95
0.

78
75

0.
78

76
0.

52
79

1.
72

8
0.

57
74

0.
33

75
0.

66
42

0.
66

24
0.

33
65

0.
32

77
0.

32
72

0.
51

52
0.

80
09

0.
80

03
0.

51
65

1.
82

4
0.

54
83

0.
32

02
0.

67
88

0.
67

82
0.

32
19

0.
31

28
0.

31
44

0.
50

09
0.

81
37

0.
81

33
0.

50
34

1.
90

9
0.

52
35

0.
30

60
0.

69
46

0.
69

23
0.

30
55

0.
30

06
0.

30
02

0.
48

76
0.

82
69

0.
82

50
0.

49
08

2.
01

3
0.

49
64

0.
29

08
0.

71
03

0.
70

88
0.

29
06

0.
28

68
0.

28
67

0.
47

58
0.

83
70

0.
83

72
0.

47
60

2.
12

4
0.

47
08

0.
27

45
0.

72
67

0.
72

64
0.

27
39

0.
27

16
0.

27
12

0.
46

03
0.

84
99

0.
85

00
0.

46
06

2.
22

4
0.

44
97

0.
25

99
0.

74
12

0.
74

03
0.

26
12

0.
25

78
0.

25
92

0.
44

88
0.

86
16

0.
86

08
0.

45
05

2.
33

7
0.

42
80

0.
24

46
0.

75
55

0.
75

53
0.

24
48

0.
24

32
0.

24
34

0.
43

48
0.

87
19

0.
87

16
0.

43
56

2.
45

4
0.

40
77

0.
23

10
0.

76
93

0.
77

02
0.

23
01

0.
23

00
0.

22
91

0.
42

29
0.

88
13

0.
88

21
0.

42
18



241Universality and Conformal Invariance for the Ising Model
2.

59
6

0.
38

39
0.

21
41

0.
78

64
0.

78
55

0.
21

08
0.

21
34

0.
21

02
0.

40
67

0.
89

38
0.

89
35

0.
40

33

2.
72

7
0.

36
66

0.
20

04
0.

80
03

0.
80

01
0.

19
86

0.
19

99
0.

19
82

0.
39

40
0.

90
20

0.
90

24
0.

39
16

2.
86

3
0.

34
92

0.
18

64
0.

81
44

0.
81

35
0.

18
54

0.
18

61
0.

18
52

0.
37

70
0.

91
23

0.
91

18
0.

37
81

3.
01

8
0.

33
15

0.
17

12
0.

82
88

0.
82

87
0.

17
12

0.
17

10
0.

17
11

0.
36

37
0.

92
04

0.
92

22
0.

36
26

3.
14

2
0.

31
82

0.
16

13
0.

83
95

0.
83

83
0.

16
11

0.
16

12
0,

16
10

0.
35

30
0.

92
85

0.
92

74
0.

35
23

3.
30

8
0.

30
23

0.
14

77
0.

85
22

0.
85

17
0.

14
76

0.
14

77
0.

14
75

0.
33

70
0.

93
53

0.
93

61
0.

33
68

3.
49

6
0.

28
61

0.
13

37
0.

86
67

0.
86

66
0.

13
31

0.
13

36
0.

13
30

0.
32

09
0.

94
41

0.
94

46
0.

32
04

3.
68

3
0.

27
15

0.
12

16
0.

87
90

0.
87

81
0.

12
12

0.
12

15
0.

12
12

0.
30

60
0.

95
07

0.
95

14
0.

30
50

3.
85

3
0.

25
96

0.
11

20
0.

88
99

0.
88

88
0.

10
99

0.
11

19
0.

10
99

0.
29

30
0.

95
73

0.
95

69
0.

29
11

4.
07

1
0.

24
56

0.
09

97
7

0.
90

12
0.

90
10

0.
09

79
9

0.
09

97
6

0.
09

79
8

0.
27

74
0.

96
3

0.
96

34
0.

27
43

4.
25

8
0.

23
49

0.
08

97
5

0.
90

93
0.

91
00

0.
08

99
5

0.
08

97
5

0.
08

99
4

0.
26

25
0.

96
75

0.
96

78
0.

26
11

4.
50

0
0.

22
22

0.
07

98
8

0.
92

18
0.

92
10

0.
07

85
3

0.
07

98
8

0.
07

85
3

0.
24

68
0.

97
33

0.
97

30
0.

24
58

4.
71

7
0.

21
19

0.
07

01
0

0.
92

97
0.

92
87

0.
07

04
2

0.
07

01
0

0.
07

04
2

0.
23

28
0.

97
65

0.
97

66
0.

23
34

4.
94

4
0.

20
23

0.
06

24
0

0.
93

78
0.

93
71

0.
06

28
8

0.
06

24
0

0.
06

28
8

0.
21

96
0.

98
02

0.
98

06
0.

21
96

5.
18

1
0.

19
31

0.
05

55
8

0.
94

53
0.

94
44

0.
05

51
4

0.
05

55
8

0.
05

51
4

0.
20

58
0.

98
33

0.
98

34
0.

20
66

5.
50

6
0.

18
16

0.
04

73
9

0.
95

33
0.

95
33

0.
04

60
2

0.
04

73
9

0.
04

60
2

0.
19

08
0.

98
65

0.
98

71
0.

18
74

5.
78

4
0.

17
30

0.
04

08
4

0.
95

98
0.

95
97

0.
04

01
0

0.
04

08
4

0.
04

01
0

0.
17

62
0.

98
93

0.
98

94
0.

17
60

6.
07

4
0.

16
47

0.
03

48
8

0.
96

55
0.

96
48

0.
03

48
6

0.
03

48
8

0.
03

48
6

0.
16

49
0.

99
13

0.
99

12
0.

16
38

6.
38

1
0.

15
67

0.
02

97
1

0.
97

05
0.

97
04

0.
02

90
2

0.
02

97
1

0.
02

90
2

0.
15

11
0.

99
30

0.
99

32
0.

14
97

6.
71

5
0.

14
89

0.
02

51
7

0.
97

56
0.

97
46

0.
02

49
4

0.
02

51
7

0.
02

49
4

0.
13

84
0.

99
45

0.
99

45
0.

13
78

7.
06

7
0.

14
14

0.
02

09
7

0.
97

95
0.

97
93

0.
02

05
7

0.
02

09
7

0.
02

05
7

0.
12

64
0.

99
57

0.
99

57
0.

12
66

7.
35

2
0.

13
60

0.
01

79
3

0.
98

24
0.

98
18

0.
01

75
0

0.
01

79
3

0.
01

75
0

0.
11

72
0.

99
65

0.
99

66
0.

11
62



[512, 147], [420, 127], [400, 127], [400, 133], [354, 125], [348, 129],

[398, 155], [336, 137], [314, 135], [386, 175], [318, 151], [302, 151],

[310, 163], [276, 153], [366, 213], [270, 165], [310, 199], [356, 239],

[258, 183], [248, 185], [282, 221], [324, 267], [232, 201], [232, 211],

[210, 201], [200, 201], [224, 237], [196, 219], [196, 229], [190, 233],

[184, 237], [184, 249], [176, 251], [288, 431], [164, 259], [176, 291],

[152, 265], [156, 287], [148, 285], [210, 425], [152, 323], [278, 625],

[152, 359], [148, 367], [132, 345], [140, 381], [126, 361], [182, 551],

[132, 421], [110, 367], [116, 409], [112, 413], [126, 491], [106, 433],

[110, 471], [154, 691], [108, 515], [112, 561], [96, 505], [116, 641],

[92, 535], [108, 661], [90, 573]

The ration r is given by r=2LH�- 3 LV as LH and LV count the number
of lines and columns of sites.

For ?h , ?s and ?hv on the disk, crossings started from and ended on
sites in the annulus between r=300.2 and r&- 2. The crossings for ?A

h and
?A

v had to reach the central diameter.
On cylinders the crossings between the curves Ci started from and

ended on the curves. On the disk the five curves were chosen at radii
r̂, 0.8811r̂, 0.7763r̂, 0.6026r̂, 0.3632r̂ with r̂=300.2&- 2. The crossings from
Ci to Cj (ri>rj ) started outside the outer curve Ci and ended inside the
inner Cj .

The programs for all lattices find geometries were written by two of us
and checked until they agreed within the statistical errors for a sample
larger than 106 even though most crossings were measured with samples of
t200 K. (See Section 5 for the samples used for the various lattices and
geometries.)

A3. The phase x

The phase x measured by the experiments is described; in Section 4.
For Fig. 26, results from cylinders of the following sizes were plotted

[59, 27], [59, 37], [59, 47], [59, 61], [59, 73], [59, 93],

[59, 119], [59, 147], [59, 179], [59, 211], [59, 249], [59, 283]
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all with at least 400 K configurations each, and

[117, 53], [117, 73], [117, 95], [117, 123], [117, 145], [117, 187],

[117, 239], [117, 293], [117, 357], [117, 421], [117, 499], [117, 565]

with at least 600 K configurations.
The distribution of the random variable x is also used to obtain the

ratios b�a through the constrained integrals (31) and (32). The errors on
the ratios b�a appearing in Table VIII are difficult to evaluate as the num-
bers a and b are the local maxima of a smoothed distribution. For the
integral (31), the most difficult to measure, the samples varied between
31 K and 50 K. After experimentation with various smoothing parameters
we think that the two first digits of the ratios b�a for the case constrained�
constrained are exact. The accuracy for the other cases is far better, the
samples being at least 85 K for the constrained� fixed and 300 K for the
fixed� fixed.

A4. The correlation ((h( p)&h(0))2)

These correlations can be measured in a straightforward way using the
above definition of h and the details in the text.
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